快速而准确的建模拓扑对于动力传动系统电气化至关重要。热效应在任何电化学系统中都非常重要,在电池模型中必须考虑这一点,因为温度因素在传输现象和化学动力学中最为重要。这里讨论了锂离子电池的动态性能,并开发了合适的电气等效电路来研究其对输出突然变化的响应。本文提出了一种具有热依赖性的有效锂电池仿真模型。一个串联电阻、一个电压源和一个 RC 块构成了所提出的等效电路模型。研究和比较了文献中常用的 1 RC 和 2 RC 锂离子电池模型。使用 Matlab/Simulink 软件对锂离子电池 1RC 和 2 RC 模型进行仿真。本文中的仿真结果表明,在恒定电流条件下,锂离子电池 1 RC 模型的最大输出误差比 2 RC 锂离子电池模型大 0.42%,在 UDDS 循环条件下,1 RC 锂离子电池模型的最大输出误差比 2 RC 锂离子电池模型大 0.18%。仿真结果还表明,在简单和复杂放电模式下,与 1 RC 锂离子电池模型相比,2 RC 锂离子电池模型的输出误差得到了很大改善。因此,本文表明,对于笔记本电脑等便携式电子设计等一般应用,锂离子电池 1 RC 模型是首选,而对于汽车和空间设计应用,锂离子 2 RC 模型是首选。在本文中,1 RC 和 2 RC 锂离子电池模型的这些仿真结果将对电动汽车实际锂离子电池管理系统的应用非常有用。
碳纳米管 (CNT) 具有一组独特的性能,例如高电流承载能力、高热导率、机械强度和极大的表面积,18 这些特性使其可用于众多应用。现在可以高效地生长高纯度的块状和表面单壁纳米管 (SWNT) 9 13,因此许多应用的生产限制似乎已经得到克服。然而,仔细观察就会发现,对于纳米管森林的许多关键应用而言,现有的生长方法所生成的森林的面积密度和性能仍然低 1 2 个数量级。以用 CNT 取代集成电路中的铜互连线为例,这是半导体路线图的一个重要里程碑。14 16 只有当 CNT 互连线的电阻低于铜时,才会使用 CNT 互连线,而这需要 CNT 面积密度至少为 2 10 13 cm 2 才能降低由量子电阻引起的串联电阻。然而,迄今为止实现的 SWNT 最高密度仅为 7·10·11 cm2,7,17 21 低了 30 倍(图 1)。散热器也存在类似的问题。虽然单个纳米管的导热系数可能与金刚石实心棒相当,3 但是,如果纳米管森林只填充了可用横截面积的 3%,实际导热系数就会低 30 倍,用处不大。22,23 为了克服这些限制,我们需要完全茂密的森林。我们在此介绍了一种催化剂设计,用于生长超高密度纳米管森林,接近所需的 2·10·13 cm2 密度,甚至可以达到更高的密度。
摘要:随着对高功率密度电气和电子系统的需求不断增长,促进了具有高能量密度、高电容密度、高电压和频率、低重量、高温可操作性和环境友好性等特性的储能电容器的发展。与电解电容器和薄膜电容器相比,储能多层陶瓷电容器 (MLCC) 具有极低的等效串联电阻和等效串联电感、高电流处理能力和高温稳定性等特点。这些特性对于电动汽车、5G 基站、清洁能源发电和智能电网中的快速开关第三代宽带隙半导体等应用非常重要。目前已有大量关于最先进的 MLCC 储能解决方案的报道。然而,无铅电容器通常具有较低的能量密度,而高能量密度电容器通常含有铅,这是阻碍其广泛应用的关键问题。在这篇综述中,我们介绍了无铅储能 MLCC 的前景和挑战。首先介绍储能机理和器件特性;然后,从成分和结构优化等方面对储能用介电陶瓷进行总结;在详细介绍电极的制备工艺和结构设计后,讨论了储能用多层陶瓷电容器的最新进展;然后,从理论和技术的角度讨论了储能用多层陶瓷电容器在先进脉冲电源和高密度功率转换器方面的新兴应用;最后,讨论了实验室规模无铅储能用多层陶瓷电容器工业化的挑战和未来前景。关键词:多层陶瓷电容器(MLCC);无铅介电陶瓷;储能;高
1 电容单位:1 pF = 10 −12 F;1 fF = 10 −15 F;1 aF = 10 −18 F。满量程 (FS) = 8.192 pF;满量程范围 (FSR) = ±8.192 pF。2 规格未经生产测试,但由产品初始发布时的特性数据支持。3 工厂校准。绝对误差包括工厂增益校准误差、积分非线性误差和系统失调校准后的失调误差,均在 25°C 下。在不同温度下,需要对增益随温度漂移进行补偿。4 可以使用系统失调校准消除电容输入失调。系统失调校准的精度受失调校准寄存器 LSB 大小 (32 aF) 或系统电容失调校准期间的转换器 + 系统 p-p 噪声限制,以较大者为准。为了最大限度地减少转换器 + 系统噪声的影响,应使用较长的转换时间进行系统电容失调校准。系统电容失调校准范围为 ±1 pF;可以使用 CAPDAC 消除较大的失调。5 规格未经生产测试,但由设计保证。6 增益误差在 25°C 时进行工厂校准。在不同温度下,需要对增益随温度漂移进行补偿。7 必须将 VT SETUP 寄存器中的 VTCHOP 位设置为 1,以实现指定的温度传感器和电压输入性能。8 使用外部温度传感二极管 2N3906,非理想因子 n f = 1.008,连接方式如图 37 所示,总串联电阻 <100 Ω。9 满量程误差适用于正满量程和负满量程。
首先,我们来看看数字信号处理。传统上,航空电子和卫星电源应用与 28v 总线(或车载 14v)相关,而后者又在需要时转换为低压配电。由于控制系统和有效载荷的数字内容增加(包括可编程阵列和传感器的模拟数字 (ADC 或 DAC) 转换),该领域正在快速增长。新设计继续采用具有更高处理速度的 ASICS,要求用于去耦的多层陶瓷芯片电容器 (MLCC) 具有较低的寄生元件,即低等效串联电阻 (ESR) 和低等效串联电感 (ESL)。越接近核心 ASIC 或可编程阵列,ESL 的控制就越关键。由于电容器是 2 端设备,因此基本 ESL 特性来自部件的几何形状 - 两个端子有效地定义了信号的电流环路,部件越大,环路越大,因此 ESL 也越大。解决这个问题的基本方法是使用“反向几何”低电感芯片电容器 (LICC),其端接在侧面而不是部件的末端。在 2:1 长宽比部件(例如 1206 尺寸)中,使用反向几何版本 0612 将在相同电容/电压设计和相同空间占用的情况下将电感降低 2 倍(通常从 1nH 到 500pH)。通过使用较小轮廓的部件和较小的环路(0508 代替 0805、0306 代替 0603 等),仍然可以实现较低的电感,但这是以降低电容值为代价的 – 并且仍然要求在 ASIC 工作频率下保持电容。因此,为了实现更快的速度,需要新的组件设计,其中电感组件可以与电容组件分开。有三种方法可以实现这一点:通过电感消除、通过非常小的信号环路以及通过最小化与 PCB 接地平面的电感耦合。电感消除的一个很好的例子是数字间电容器 (IDC)。这是一种反向
光伏技术的进步肯定是由铅基钙钛矿太阳能电池(PSC)改造的。但铅毒性是其大规模商业生产和使用的巨大障碍。因此,在目前的工作中,已经对三种无铅钙钛矿材料Masni 3,Masnbr 3和Magei 3进行了彻底研究,以开发高效率和稳定性的环境友好PSC。建模的设备结构用ZnO用作电子传输层(ETL),CH 3 NH 3 SNI 3,CH 3 NH 3 NH 3 SNBR 3和CH 3 NH 3 GEI 3作为钙钛矿的吸收层(PAL),螺旋形成孔作为孔传输层(HTL),Indium掺杂锡氧化物(HTL),Indium oped Tin oxide(Ito)(ITO)(ITO)和顶部的Electode and Anode Anode Anode Anode Anode Anode Anode Anode。缺陷密度与钙钛矿吸收层的不同厚度相结合,以获得最佳的太阳能电池参数。At a thickness of 500 nm and defect density of 1 × 10 14 cm −3 of PAL, simulated Perovskite solar cell ITO/ZnO/CH 3 NH 3 SnI 3 /Spiro- OMeTAD/Au provided optimized solar cell parameters as PCE 25.95%, Voc 1.06V, Jsc 31.67mA/cm 2 and FF 77.24%, ITO/ ZnO/CH 3 NH 3 SnBr 3 /Spiro-OMeTAD/Au provided PCE 25.01%, V OC 1.02V, J SC 32.41 mA/cm 2 and FF 75.68%, ITO/ZnO/CH 3 NH 3 SnI 3 /Spiro-OMeTAD/Au provided PCE 19.66%, V OC 1.81V, J SC 14.29 mA/cm 2 and FF 75.95%.此外,对太阳能电池特征研究了界面缺陷密度,串联电阻,分流电阻和温度的影响。可以很好地观察到,基于SN的设备比基于GE的设备更有效,更稳定,反之亦然。
首先,我们来看看数字信号处理。传统上,航空电子和卫星电源应用与 28v 总线(或 14v 车载总线)相关,而后者又可在需要时转换为低压配电。由于控制系统和有效载荷的数字内容增加(包括可编程阵列和传感器的模拟数字 (ADC 或 DAC) 转换),该领域正在快速增长。新设计继续采用具有更高处理速度的 ASIC,要求用于去耦的多层陶瓷芯片电容器 (MLCC) 具有更低的寄生元件,即低等效串联电阻 (ESR) 和低等效串联电感 (ESL)。越接近核心 ASIC 或可编程阵列,ESL 的控制就越关键。由于电容器是 2 端子设备,因此基本 ESL 特性源自部件的几何形状 - 两个端子有效地定义了信号的电流环路,部件越大,环路越大,因此 ESL 也越大。解决这个问题的基本方法是使用“反向几何”低电感芯片电容器 (LICC),其端接在侧面,而不是部件的末端。在 2:1 纵横比的部件(例如 1206 尺寸)中,使用反向几何版本 0612 可将电感降低 2 倍(通常从 1nH 降低到 500pH),同时保持相同的电容/电压设计和相同的空间。通过使用更小的轮廓部件和更小的环路(0508 代替 0805、0306 代替 0603 等),仍然可以实现更低的电感,但这是以降低电容值为代价的 - 并且 ASIC 工作频率下的电容保持仍然是一项要求。因此,为了实现更快的速度,需要新的组件设计,其中电感组件可以与电容组件分离。有三种方法可以做到这一点 - 通过电感消除、通过非常小的信号环路以及通过最小化与 PCB 接地平面的电感耦合。电感消除的一个很好的例子是数字间电容器 (IDC)。这是一个反向
具有交错结构(例如蚀刻停止 (ES) 和背沟道蚀刻 (BCE) 结构)的铟镓锌氧化物 (IGZO) 薄膜晶体管 (TFT) 已被证明可用作平板显示器中的电路器件 [1,2]。然而,由于栅极和源/漏极 (S/D) 电极之间的重叠,这些交错结构器件不可避免地具有较大的寄生电容,从而导致 TFT 器件的工作速度较低。自对准 (SA) 共面结构是克服该寄生电容问题的一种有前途的解决方案 [3]。形成导电的 n + -IGZO 以获得有源 S/D 区和 S/D 电极之间的欧姆接触是 SA 共面器件的重要工艺。已经提出了许多用于该工艺的方法,并且制备的 IGZO 器件具有良好的性能。通常使用等离子体处理(Ar、H2 等)[4,5] 和深紫外(DUV)照射 [6] 。然而,这些解决方案需要一个额外的步骤,如图 1a 所示,这会导致额外的工艺成本。在 SiO2 栅极绝缘体(GI)过蚀刻期间形成 n + -IGZO 是一种简单的方法 [7,8]。然而,当 GI 蚀刻等离子体可以蚀刻 IGZO 薄膜时,这种方法并不适用。最近,已经证明通过简单地涂覆有机层间电介质(ILD)可以形成 n + -IGZO 区域,并且获得了 24 Ω·cm 的沟道宽度归一化 S/D 串联电阻(R SD W)[9]。本报告展示了在 ILD 沉积过程中形成 n + -IGZO 区域的可能性。基于这个想法,其他制造低 R SD W SA 共面 IGZO TFT 的新方法值得研究。在这项工作中,我们使用磁控溅射工艺沉积 SiO x ILD 并同时为 SA 共面 IGZO TFT 形成 n + -IGZO 区域。这样,ILD 沉积和 n + 形成可以合并为一个步骤,如图 1b 所示。制造的器件具有相当低的 R SD W 。降低 IGZO 薄膜的机制
测量电容 (Cs/Cp)、电感 (Ls/Lp)、电阻 (Rs/Rp)、参数:耗散 (DF) 和品质因数 (Q)、阻抗 |Z|、导纳 |Y|、相位角 ( )、等效串联电阻 (ESR)、电导 (Gp)、电抗 (Xs)、电纳 (Bp) 同时测量和显示的任意两个参数注意:s = 串联,p = 并联,ESR 相当于 Rs 测量 |Z|、R、X:000.0001 mohm 至 99.99999 Mohm 范围:|Y|、G、B:00000.01 S 至 9.999999 MS C:00000.01 fF 至 9.999999 F L:0000.001 nH 至 99.99999 H D:.0000001 至 99.99999 Q:.0000000 至 999999.9 相位角:-180.0000 至 +179.9999 度 Delta %:-99.9999 % 至 +99.9999 % 测量基本增强扩展精度:LCR:+/- 0.5%* +/- 0.25%* +/- 0.05%* DF:+/- 0.0050 +/- 0.0025 +/- 0.0005 * 在最佳测试信号电平、最佳 DUT 值且无校准不确定度误差的情况下。使用大约 7000 个附件装置和电缆时,仪器精度可能会低于标称规格。最佳精度要求开路/短路调零期间使用的几何一致性与实际测量过程中装置和电缆上使用的几何一致性。使用非屏蔽开尔文夹和镊子型连接时,这种一致性可能尤其难以实现。实施负载校正并与用户提供的标准进行比较后为 0.25 x(正常精度)。在 3 Z 80k 范围内,100mV 编程 V 1V 或 100mV (编程 I) x (Z) 1V 测试频率:10 Hz 至 500 kHz 分辨率:0.1 Hz 从 10 Hz 至 10 kHz,5 位数字 > 10 kHz 精度:+/-(0.002% +0.02 Hz) 测量速度:基本精度:25 毫秒*/测量增强精度:125 毫秒*/测量扩展精度:1 秒*/测量 * 可能更长,具体取决于测试条件和频率测距:自动或量程保持