1 本指南由临床药理学办公室儿科工作组与食品药品管理局药品评价与研究中心医疗政策协调委员会儿科小组委员会联合制定。 2 在本指南中,申办者一词指申办者和申请人。 3 在本指南中,药品包括根据联邦食品药品监督管理局法案第 505 节(21 USC 355)批准的药品和根据 PHS 法案第 351(a) 节(42 USC 262(a))许可并作为药品进行监管的生物制品。此后,药品一词将用于指代所有此类产品。 4 本指南适用于根据 PHS 法案第 351(a) 节提交的 BLA。有关机构对根据第 351(k) 节提交的 BLA 的临床药理学考虑事项的想法,请参阅 FDA 指南《支持与参考产品生物相似性的临床药理学数据》(2016 年 12 月)。我们会定期更新指南。如需获取指南的最新版本,请查看 FDA 指南网页 https://www.fda.gov/RegulatoryInformation/Guidances/default.htm 。此外,有关生物仿制药申请背景下的儿科研究公平法案 (PREA)(FD&C 法案第 505B 节)的信息,请参阅 FDA 指南《生物仿制药开发和 BPCI 法案问答(修订版 2)》(2021 年 9 月)。
1 本指南由药品评价与研究中心 (CDER) 临床药理学办公室、转化科学办公室新生儿临床药理学工作组与 CDER 新药办公室儿科和孕产妇健康部、局长办公室儿科治疗学办公室和食品药品管理局生物制品评价与研究中心合作制定。 2 本指南适用于根据《公共卫生服务法》(PHS 法) 第 351(a) 节提交的 BLA。有关该机构对根据 PHS 法第 351(k) 节提交的 BLA 的考虑,请参阅 FDA 指南《支持与参比产品生物相似性证明的临床药理学数据》(2016 年 12 月)。我们会定期更新指南。有关指南的最新版本,请查看 FDA 指南网页 https://www.fda.gov/RegulatoryInformation/Guidances/default.htm。有关生物仿制药申请的更多信息,请参阅 FDA 指南《生物仿制药开发和 BPCI 法案问答(修订版 2)》(2021 年 9 月)。3 本指南中的以下术语“申办者”指申办者和申请人。4 在本指南中,对药品的引用包括根据《联邦食品、药品和化妆品法案》(FD&C 法案或法案)第 505 节(21 USC 355)批准的药品和根据《公共卫生服务法案》(PHS 法案)第 351(a) 条(42 USC 262(a))许可的作为药品监管的生物制品。此后,术语“药品”将用于指代所有此类产品。 5 欲了解更多信息,请参阅 FDA 指南草案《药物和生物制品儿科研究的一般临床药理学考虑因素》(2014 年 12 月),其中涉及所有儿科亚群(包括新生儿)的一般临床药理学考虑因素。最终版本将代表 FDA 目前对此主题的看法。
Yow-Ming Wang,博士 美国食品药品管理局临床药理学办公室生物仿制药和治疗性生物制品副主任 Yow-Ming Wang 博士目前担任 FDA 临床药理学办公室生物仿制药和治疗性生物制品副主任。她领导的治疗性生物制品项目旨在通过制定明确的政策、提高审查质量、促进知识共享、建立合作与拓展,促进生物产品开发中的科学和监管卓越性。 Gary Lyman,医学博士,公共卫生硕士,FACP,FRCP(爱丁堡),FASCO 教授;弗雷德哈钦森癌症研究中心公共卫生科学部和临床研究部癌症预防项目高级主管;哈钦森癌症结果研究所卫生保健质量与政策教授和兼职教授;华盛顿大学和杜克大学医学院公共卫生与药学系 Lyman 博士是弗雷德哈钦森癌症研究中心公共卫生科学与临床研究教授,同时还是哈钦森癌症结果研究所医疗质量与政策高级主管。他还是华盛顿大学和杜克大学医学院医学教授和公共卫生与药学副教授。
遗传相关的脂蛋白升高(A)[LP(A)]水平的抽象患者患冠状动脉疾病,心脏病发作,中风和周围动脉疾病的风险更大。迄今为止,没有美国FDA批准的药物疗法旨在针对LP(a),目的是在风险增加的患者中降低LP(a)水平。美国心脏学院(ACC)已提供了有关如何使用传统脂质特征来评估动脉粥样硬化心血管疾病(ASCVD)的风险的指南;然而,即使出现了他汀类药物附加疗法,例如ezetimibe和proprotein croventase蛋白毒素/Kexin型9型(PCSK9)抑制剂,一些LP(a)生物标志物升高的种群仍然具有心血管(CV)疾病的风险增加。残留的简历风险导致研究人员询问如何将LP(a)用作减少简历事件的潜在预防疗法。本评论旨在介绍和讨论与Pelacarsen有关的当前临床和科学证据。
1尼特兰莱顿市莱顿大学医学中心外科部;荷兰; v.q.sier@lumc.nl(V.Q.S. ); m.r.de_vries@lumc.nl(M.R.D.V. ); j.r.van_der_vorst@lumc.nl(J.R.V.D.V. ); a.l.vahrmeijer@lumc.nl(a.l.v.) 2尼德兰莱顿大学医学中心肾脏科学系,荷兰莱顿2300; c.van_kooten@lumc.nl 3荷兰莱顿2300 RC Leiden RC Leiden University Center的转化纳米材料和成像集团放射学系; L.J.Cruz_ricondo@lumc.nl 4放射科,核医学科,莱顿大学医学中心,荷兰2300 RC Leiden; l.f.de_geus-oei@lumc.nl 5生物医学光子成像小组,Twente University,7522 NB NB Enschede,荷兰6荷兰6号研发部,Uniqure,Uniqure,1100 DA Amsterdam,荷兰,荷兰; v.sier-ferreira@uniqure.com 7 Percuros B.V. Leiden, 2333 CL Leiden, The Netherlands 8 Translational Molecular Imaging, Clinic of Hematology and Medical Oncology, Institute of Diagnostic and Interventional Radiology, University Medicine Center Göttingen and Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany; falves@gwdg.de 9 Sheffief Figfiled sheffinfinfinfinforn and Sheffiffinffinfinforn and Sheffinfinfinford s10 2RX,英国; m.muthana@sheffield.ac.uk *通信:c.f.m.sier@lumc.nl或k.sier@percuros.nl;电话。 : +31-71-526-26101尼特兰莱顿市莱顿大学医学中心外科部;荷兰; v.q.sier@lumc.nl(V.Q.S.); m.r.de_vries@lumc.nl(M.R.D.V.); j.r.van_der_vorst@lumc.nl(J.R.V.D.V.); a.l.vahrmeijer@lumc.nl(a.l.v.)2尼德兰莱顿大学医学中心肾脏科学系,荷兰莱顿2300; c.van_kooten@lumc.nl 3荷兰莱顿2300 RC Leiden RC Leiden University Center的转化纳米材料和成像集团放射学系; L.J.Cruz_ricondo@lumc.nl 4放射科,核医学科,莱顿大学医学中心,荷兰2300 RC Leiden; l.f.de_geus-oei@lumc.nl 5生物医学光子成像小组,Twente University,7522 NB NB Enschede,荷兰6荷兰6号研发部,Uniqure,Uniqure,1100 DA Amsterdam,荷兰,荷兰; v.sier-ferreira@uniqure.com 7 Percuros B.V. Leiden, 2333 CL Leiden, The Netherlands 8 Translational Molecular Imaging, Clinic of Hematology and Medical Oncology, Institute of Diagnostic and Interventional Radiology, University Medicine Center Göttingen and Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany; falves@gwdg.de 9 Sheffief Figfiled sheffinfinfinfinforn and Sheffiffinffinfinforn and Sheffinfinfinford s10 2RX,英国; m.muthana@sheffield.ac.uk *通信:c.f.m.sier@lumc.nl或k.sier@percuros.nl;电话。 : +31-71-526-26102尼德兰莱顿大学医学中心肾脏科学系,荷兰莱顿2300; c.van_kooten@lumc.nl 3荷兰莱顿2300 RC Leiden RC Leiden University Center的转化纳米材料和成像集团放射学系; L.J.Cruz_ricondo@lumc.nl 4放射科,核医学科,莱顿大学医学中心,荷兰2300 RC Leiden; l.f.de_geus-oei@lumc.nl 5生物医学光子成像小组,Twente University,7522 NB NB Enschede,荷兰6荷兰6号研发部,Uniqure,Uniqure,1100 DA Amsterdam,荷兰,荷兰; v.sier-ferreira@uniqure.com 7 Percuros B.V. Leiden, 2333 CL Leiden, The Netherlands 8 Translational Molecular Imaging, Clinic of Hematology and Medical Oncology, Institute of Diagnostic and Interventional Radiology, University Medicine Center Göttingen and Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany; falves@gwdg.de 9 Sheffief Figfiled sheffinfinfinfinforn and Sheffiffinffinfinforn and Sheffinfinfinford s10 2RX,英国; m.muthana@sheffield.ac.uk *通信:c.f.m.sier@lumc.nl或k.sier@percuros.nl;电话。: +31-71-526-2610
癌症可能会通过将肿瘤微环境重新向免疫抑制状态重新布线来逃避宿主免疫系统的消除。 转化生长因子-β(TGF-β)是一种分泌的多功能细胞因子,强烈调节免疫细胞的活性,而同时可以促进癌细胞侵袭和诸如癌症相关成纤维细胞的出现等恶性特征。 tgf-β在癌症中表现出良好的表达,并且最常见的是与临床不良结局相关的丰度。 免疫治疗策略,尤其是T细胞检查点阻滞疗法,到目前为止,仅在少数癌症患者中产生临床益处。 TGF-β活性的抑制是提高T细胞检查点阻断疗法疗效的一种有前途的方法。 在这篇综述中,我们简要概述了TGF-β在生理和恶性环境中的免疫调节功能。 然后,我们旨在考虑TGF-β的治疗靶向如何导致最先进的免疫疗法的扩展适用性和成功。癌症可能会通过将肿瘤微环境重新向免疫抑制状态重新布线来逃避宿主免疫系统的消除。转化生长因子-β(TGF-β)是一种分泌的多功能细胞因子,强烈调节免疫细胞的活性,而同时可以促进癌细胞侵袭和诸如癌症相关成纤维细胞的出现等恶性特征。tgf-β在癌症中表现出良好的表达,并且最常见的是与临床不良结局相关的丰度。免疫治疗策略,尤其是T细胞检查点阻滞疗法,到目前为止,仅在少数癌症患者中产生临床益处。TGF-β活性的抑制是提高T细胞检查点阻断疗法疗效的一种有前途的方法。在这篇综述中,我们简要概述了TGF-β在生理和恶性环境中的免疫调节功能。然后,我们旨在考虑TGF-β的治疗靶向如何导致最先进的免疫疗法的扩展适用性和成功。
1. Wong CH、Siah KW、Lo AW。临床试验成功率及相关参数评估。生物统计学。2019;20(2):273-286。2. Cohen AF、Burggraaf J、van Gerven JMA、Moerland M、Groeneveld GJ。生物标志物在人体药理学(I 期)研究中的应用。药理学年鉴。2015;55:55-74。3. FDA。生物标志物资格认定:面向行业和 FDA 工作人员的证据框架指南草案。2018。4. FDA。药物开发工具资格认定流程面向行业和 FDA 工作人员的指南草案。2019。5. Pal A、Matzneller P、Gautam A 等人。健康志愿者中多西环素治疗红斑痤疮的靶位药代动力学与食物效应无关。Br J Clin Pharmacol。2018;84(11):2625-2633。6. Dragatin C、Polus F、Bodenlenz M 等。开放流微灌注证实 Secukinumab 分布到银屑病患者的真皮间质液中。Exp Dermatol。2016;25(2):157-159。7. FDA。2019 可从以下网址获得:https://www.fda.gov/drugs/regulatory-science-action/impact-story-developing-new-ways-evaluate- bioequivalence-topical-drugs8. Bonnel D、Legouffe R、Eriksson AH 等。 MALDI 成像通过确定定量皮肤分布特征促进了新外用药物开发过程。Anal Bioanal Chem。2018;410(11):2815-2828。9. Mateus R、Abdalghafor H、Oliveira G、Hadgraft J、Lane ME。皮肤药代动力学的新范式——共聚焦拉曼光谱。Int J Pharm。2013;444(1–2):106-108。10. Caspers PJ、Nico C、Bakker Schut TC 等人。基于共聚焦拉曼光谱量化局部应用材料在体内皮肤渗透的方法。Translat Biophoton。2019;1(1–2):e201900004。11. Berends SE、D'Haens G、Schaap T 等人。干血样本可用于监测炎症性肠病患者的英夫利昔单抗浓度:临床验证。英国临床药理学杂志。2019;85(7):1544-1551。12. Kneepkens EL、Pouw MF、Wolbink GJ 等人。手指刺破后的干血斑有助于监测炎症性疾病患者的阿达木单抗和抗阿达木单抗治疗药物。英国临床药理学杂志。2017;83(11):2474-2484。13. EMA。关于识别和减轻首次人体试验和早期临床试验风险的策略指南(EMEA/CHMP/SWP/28367/07 Rev. 1),2017 年 7 月。14. Rissmann R、Szabadi E. 焦点评论:如何在 1 期试验中证明免疫调节药物的药理学?Br J Clin Pharmacol。2019;85(7):1389-1390。15. Niemeyer–van der Kolk T、van der Wall H、Hogendoorn G、Rijneveld RSL、van Alewijk D 等人。Omiganan 增强健康志愿者皮肤中咪喹莫特诱导的炎症反应。临床翻译科学。 2020. https://doi.org/10.1111/cts.12741 16. van der Kolk T, Assil S, Rijneveld R 等。用于药物开发的咪喹莫特诱发的人体皮肤炎症模型的全面、多模态表征。临床翻译科学。2018;11(6):607-615。
了解疾病发展的机制对于开发新的药物疗法非常重要。在许多慢性病中,疾病是由于受影响组织内细胞的异常活动引起的。确定这些细胞活动变化的原因是了解病理学的关键。我们工作的主要重点是骨关节炎,它是全球成年人致残的主要原因,但目前尚无改善疾病的药物治疗方法。我们正在利用从患者身上获得的组织研究与疾病有关的途径,以确定新的潜在药物靶点。目前,我们的研究特别关注昼夜节律钟,这是一种存在于细胞内的分子计时机制,负责安排每日细胞活动以及细胞增殖、分化和衰老的时间。骨关节炎患者的软骨细胞中的昼夜节律钟发生了改变。组织特异性昼夜节律钟也会在癌症等许多慢性病中发生改变。我们正在研究骨关节炎中时钟紊乱的原因和后果,并通过合作研究时钟紊乱在癌症中的作用。
缩写:F,绝对生物利用度;Tmax,达峰浓度时间;t1/2,消除半衰期;AUC,浓度-时间曲线下面积;Vd/F,表观分布容积;CL/F,表观口服清除率;Ctrough,谷浓度