过去几十年来,生长技术的令人瞩目的进步使得人们能够制造出非常高质量的低维半导体结构——量子阱、量子线和量子点,这为光电子学和自旋电子学领域的量子信息技术开辟了新的研究途径和无数的应用 1-3 。作为量子限制的直接结果,基本半导体激发可以达到非常大的结合能,使所谓的“激子”领域成为一个有前途的研究领域 4 。虽然激子的概念在空间限制沿一维(量子阱)或二维(量子线)时有意义,但我们在这里表明,当三个空间维度受到限制(量子点)时,束缚电子-空穴对作为激子的图像会被打破。这就是为什么我们不应该像对待其他结构那样将量子点 (QD) 中的电子-空穴对称为激子,而应该使用其他术语。这个问题不仅仅是语义问题;对于电子-空穴对与其他载流子相互作用并与光子耦合,以及光子吸收的可能性,物理理解完全不同。
自 20 世纪末以来,雷达技术已得到广泛应用,尤其是在海事和航空领域 [1-3]。雷达技术中最重要的课题之一是在背景噪声中探测隐形目标。另一方面,当前量子技术的发展为远程探测提供了新的可能性,从而产生了量子雷达的概念。本文提出了一种基于光子对之间量子纠缠的量子雷达“玩具模型”。这种简单的模型并不追求逼真,而是具有关于量子雷达潜力的教育价值。当前用于传输信息的量子技术的发展引入了“量子雷达”的概念,尽管直到 2008 年 Lloyd 的文章发表之前,这个想法一直没有引起人们的兴趣 [4]。在这篇文章中,Seth Lloyd 表明,与光子对的量子纠缠可以显著提高光频范围内的远程探测灵敏度。这种利用纠缠进行远程检测的方式称为“量子照明”(QI)。自本文发表以来,人们对量子雷达领域的兴趣日益浓厚。该主题已经开展了新的理论和实验研究 [5-12]。围绕量子雷达的研究已经从关注单个光子转向小束光子 [4,11]。同样,研究也从光学频率范围 [4] 转向微波频率范围 [11-13],这更适合雷达应用,但也更具挑战性。在此背景下,目前正在开发新技术,以使微波领域的量子照明成为可能。例如,我们可以引用约瑟夫森结,它能够在低温下直接产生微波纠缠光子。还有光学光子和微波光子之间的耦合 [11]。然后,氮空位中心(称为 NV 中心)也允许产生微波纠缠光子。尽管这种量子雷达的可行性面临巨大困难,但该研究领域仍然非常活跃。量子雷达与传统雷达的用途相同,但其功能依赖于量子力学原理。
“路径求和”形式主义是一种符号化操作描述量子系统的线性映射的方法,也是用于形式化验证此类系统的工具。我们在此给出了该形式主义的一组新重写规则,并表明它对于“Toffili-Hadamard”是完整的,这是量子力学最简单的近似通用片段。我们表明重写是终止的,但不是汇合的(这是片段普遍性所预期的)。我们使用路径求和和图形语言 ZH-Calculus 之间的联系来实现这一点,并展示了公理化如何转化为后者。最后,我们展示了如何丰富重写系统以达到量子计算二元片段的完整性——通过将具有二元 π 倍数的相位门添加到 Toffili-Hadamard 门集来获得——特别用于量子傅里叶变换。
1 法国雷恩第一大学欧仁·马奎斯抗癌中心,法国国家健康与医学研究院,UMR_S 1242,COSS(化学,癌变应激信号),35042 雷恩,法国;bevantkevin@gmail.com(KB);matthis.desoteux@univ-rennes1.fr(MD)2 埃及开罗大学国家癌症研究所癌症生物学系,开罗 11796,埃及;abdelhadynci@gmail.com 3 埃及开罗大学学生医院医学实验室部,开罗 11796,埃及;drsabrin2007@gmail.com 4 埃及米斯尔科技大学(MUST)应用健康科学技术学院医学实验室技术系,Al-Motamayez 区,十月六日邮政信箱 77,埃及* 通讯地址:ayman.metwally@must.edu.eg(AMM); cedric.coulouarn@inserm.fr (CC) † 这些作者对这项工作做出了同等贡献。
光催化水分裂已成为氢生产的可持续途径,利用阳光来驱动化学反应。本综述探讨了DENSITY功能理论(DFT)与机器学习(ML)的整合,以加速光催化剂的发现,优化和设计。DFT提供了对电子结构和反应机制的量子力学见解,而ML算法可以对材料特性,催化性能的预测和逆设计进行高通量分析。本文大约在二元光催化系统中取得进步,突出了Tio 2,Bivo 4和G-C 3 N 4等材料,以及新型的异质关节和共同催化剂,以改善光吸收和电荷分离E FFI的效率。关键突破包括在实验和计算数据集中训练的ML架构,例如随机森林,支持矢量回归和神经网络,以优化带隙,表面反应和氢的演化速率。诸如量子机学习(QML)和生成模型(GAN,VAE)等新兴技术展示了探索假设材料并提高计算效率的潜力。该评论还突出了高级光源,例如可调LED和太阳模拟器,以实验光催化系统的实验验证。挑战与数据标准化,可伸缩性和可解释性有关,提出了协作框架工作和开放访问存储库,以使DFT-AI工具民主化。通过桥接实验和计算方法,这种协同方法的变化潜力可实现可扩展的,成本的氢生产,为可持续能源解决方案铺平了道路。
数字技术近年来出现了,通过提高生产力,优化资源分配和改善市场获取,为可持续农业发展提供了关键和创新的解决方案。可以观察到该地区农业和食品系统中数字技术的几个成功案例,例如精密农业,农业咨询服务和通过数字市场进行的农业贸易。但是,某些AMS仍然存在局限性。一项2023年的ERIA研究表明,东盟地区数字农业的传播仍然有限,并且AMS之间存在明显的差异。需要采取政府和其他利益相关者的进一步努力,以增强政策工具和计划,有效而有用的财务计划,公共部门和私营部门之间的密切合作以及与东盟合作伙伴的合作。
摘要我们对四个完全对流的“双”宽二进制的旋转和出色活性进行了研究。每对中的组件具有(1)星形统计结果,它们是普通型 - 运动二进制文件,(2)Gaia BP,RP和2Mass J,H和K S幅度在0.10 mag之内匹配,并且(3)大概是相同的年龄和成分。我们报告了所有组件的长期光度法,旋转周期,多型Hα等效宽度,X射线照明,时间序列径向速度和斑点观测值。虽然可能会希望双胞胎组件具有匹配的磁性属性,但事实并非如此。GJ 1183 AB的长期光度法表明,A比B上的斑点活性持续更高,这一趋势与L X中的58%±9%强58%±9%相匹配,HHα平均强26%±9% - 尽管A = 0.86天的旋转周期和B = 0.68天,但该范围与旋转范围相似,并在此旋转范围,并且旋转了范围。年轻的βPIC移动组成员2MA 0201 + 0117 AB显示出一个始终如一的活性B成分,在L X中强3.6±0.5倍,平均Hα强52%±19%,在A = 6.01天旋转,在A = 6.01天,B = 3.30天。最后,NLTT 44989 AB显示出显着的差异,对Spindown Evolution的影响 - B持续Hα发射,而A显示吸收,B在L X中强39±4倍,大概是由于令人惊讶的不同旋转周期= 38天= 38天,B = 6.55天。最后一个系统KX COM具有未解决的径向速度伴侣,因此不是双胞胎系统。
摘要广泛使用的达西定律指定流体流量的达西速度与驱动流动的压力梯度之间的线性关系。但是,研究表明,当压力梯度充分低时,在低渗透性多孔培养基(例如粘土和页岩)中,达西速度可以表现出非线性依赖性对压力梯度的依赖性。此phe-nomenon被称为低速性非darcian流或携带前流。本文对低渗透性多孔培养基中携带前流的理论,实验数据和建模方法进行了全面综述。审查首先概述了携带前流的基本机制,这些机制调节了独特特征,例如Darcy速度对压力梯度的非线性依赖性及其与流体 - 岩石相互作用的相关性。随后进行审查进行了详尽的汇编,对在各种低渗透性的土地材料中进行的实验研究进行了彻底的汇编,包括紧密的砂岩,页岩和粘土。接下来,审查了为了拟合和解释实验数据而开发的经验和理论模型和仿真方法。最后,审查强调了进行和解释携带前流实验的挑战,并提出了未来的研究方向。通过分析以前的实验研究,该综述旨在为寻求增强其对低渗透性土地材料中流体动态的研究人员和从业人员提供宝贵的资源。这提供了有关在众多天然和工程过程中应用前携带流量的应用,例如页岩油和天然气回收,低渗透性含水层中的污染物运输以及核废料的地质处理。
•实施,监控和或遵守理事会的WHS管理系统,包括但不限于WHS政策,标准操作程序,风险评估/工作说明以及相关工作区域中的相关系统工具
有机-无机金属卤化物钙钛矿正在迅速接近最先进的硅太阳能电池,性能最佳的设备现在已达到 25.7% 的能量转换效率 (PCE)。[1] 尽管稳定性仍然是钙钛矿太阳能电池 (PSC) 面临的挑战,但它们的溶液加工性是一大优势。刮刀涂布、[2] 狭缝模头涂布 [3] 和喷涂 [4] 等技术与卷对卷 (R2R) 加工兼容,原则上,这应该可以实现比现有硅太阳能技术高得多的生产速度。然而,用于结晶钙钛矿活性层的漫长退火时间降低了实际制造过程中可以达到的最大理论网速。2020 年,Rolston 等人展示了所有可扩展 PSC 加工技术中最高的涂层速度,实现了 > 12 m min −1 的生产速度。 [5] 喷涂工艺与大气等离子体后处理工艺相结合,[6] 制备出的 PSC 器件和模块的 PCE 分别为 18% 和 15.5%。至关重要的是,它们是在不对钙钛矿层进行退火的情况下制造的。在这种速度下,模块成本预计可以与 Si 完全竞争。[7] 相比之下,经过 10 分钟退火的旋涂 PSC 的计算吞吐率仅为 0.017 m min −1 ;这个速率远远超出了商业化要求。此外,高温处理步骤会增加公用设施成本并降低吞吐率,从而增加了器件制造成本。[8] 高工艺温度也与许多敏感的柔性(聚合物)基板不兼容,而这些基板预计在“物联网”应用中非常重要。[9,10] 这个不断增长的市场预计将使钙钛矿的初始投资和市场进入门槛降低一个数量级。[11]