r TE n ( ω ) M eo,nm ( r , k 3 ) ⊗ M eo,nm ( r ′ , k 3 ) + r TM n ( ω ) Ne eo,nm ( r , k 3 ) ⊗ Ne eo,nm ( r ′ , k 3 )。
带机器”(Wagner,2017年)然而,人形机器人的劣势是:它们越多地像人类,他们往往会令人不安,有时是令人反感的,这种现象被称为“令人不安的山谷”。 div>Masahiro Mori是东京学院的机器人教授,他写了一篇文章(Mori,1970),讲述了他如何想象人们对机器人的反应,这些机器人看起来像是人类的反应。 div>特别是,他提出了一个假设,即一个人对人源化机器人的反应将在接近但没有实现的情况下从同理心变成反击,再到更现实的外观(图1)。 div>有几个因素导致这些不适感,包括人形机器人中低质量特征的异常,例如抗自然的肤色和异常的眼睛,与死者的相似之处,以及对应对面部特征的期望。 div>
中央早熟青春期(CPP)是儿童的一种内分泌疾病,其特征是生殖器发育和八岁以前的女孩和九岁的男孩。下丘脑 - 垂体 - 基达轴(HPGA)的过早激活限制了成年患者的高度,并且与乳腺癌的风险更高有关。如何预防和改善CPP的预后是一个重要的问题。维生素D受体(VDR)在生殖系统中广泛表达,参与调节性激素的合成和功能,并影响性腺的发育和功能。此外,肠道菌群主要通过调节代谢产物,能量稳态和激素调节在人类健康中起重要作用。本综述旨在阐明维生素D的影响对CPP的发生和发育的影响,并探索肠道微生物群在其中的作用。尽管关于维生素D的证据,肠道菌群和性发育之间的相互作用仍然有限,但补充维生素D和肠道菌群干预措施为管理CPP提供了有希望的,非侵入性的策略。
1型糖尿病(T1D)是一种复杂的代谢自身免疫性疾病,会影响全球数百万个个体,并且通常会导致显着的合并症。然而,自身免疫和疾病发作的精确触发因素仍未完全阐明。本综合观点文章综合了基因环境相互作用在T1D病理生理学中的累积作用。遗传学在T1D易感性中起着显着的作用,特别是在主要的组织相容性复合物(MHC)基因座和组织蛋白酶H(CTSH)基因座。除了遗传学外,环境因素(例如病毒感染,农药暴露和肠道微生物组的变化)与T1D的发展有关。肠道微生物组的改变会影响粘膜完整性和免疫耐受性,从而通过分子模仿和调节肠道免疫系统来增加肠道渗透性,从而通过自身免疫性诱导增加T1D的风险。HLA II类单倍型对T1D发病率有已知作用可能与肠道微生物组的变化直接相关,但恰恰是肠道微生物组的影响如何变化,以及这些变化如何引起T1D需要进一步研究。假设这些基因环境相互作用通过表观遗传学变化(例如DNA甲基化和组蛋白修饰)提高对T1D的敏感性,从而依次改变了基因表达。有必要确定针对这些表观遗传修饰的新干预措施的有效性,例如“ Epidrugs”,这将为T1D有效管理提供新的途径,从而改善受影响的个体的生活质量及其家人及其家人/护理人员。
植物病原体对农作物生产造成严重破坏,对农业和自然生态系统构成威胁。深入了解植物-病原体相互作用对于制定创新的农作物疾病控制和环境保护策略至关重要(Bulasag 等人)。尽管数十年来一直致力于研究植物免疫的复杂性,但理解不同宿主和微生物之间复杂的跨界相互作用仍然具有挑战性。这本 Frontiers 电子书“植物病原体相互作用中的植物防御机制”提供了 19 篇文章,涵盖了植物与病原体之间各种机制的研究。本摘要旨在为在一系列植物-病原体相互作用中控制植物免疫的复杂机制提供新的视角和新见解。
摘要 植物与微生物之间的相互作用显著影响着植物的行为、生长和进化。许多微生物物种,如细菌、真菌、病毒和古菌,它们在植物的根际、叶际和内际定殖,参与了这些复杂的关联。根据微生物的特性和功能以及它们对植物的影响,这些相互作用可能是有利的,也可能是有害的。植物与微生物之间的积极关系对于营养吸收、抗逆性和抗病性至关重要。植物相关微生物可以通过多种方法提高营养的利用率,包括固氮、磷酸盐溶解和铁动员。它们还可以产生促进植物生长发育的植物激素。此外,某些有益微生物可作为生物防治剂,抑制病原体生长并保护植物免受疾病侵害。复杂的分子信号网络,如植物和微生物之间的化学信号流,经常促进这些相互作用。另一方面,某些微生物会感染植物,导致严重的产量损失。植物可能通过伤口、环境中的孔洞或直接的植物组织渗透而感染病原体。它们会产生化学物质和酶,干扰植物的防御能力并损害其免疫系统。病原体还会阻碍营养物质的摄入并干扰正常的生理功能,从而损害植物的健康。为了实现可持续农业和生态系统的正常运作,必须了解植物-微生物相互作用的微妙之处。利用有利的相互作用可以创造创新技术,包括生物肥料、生物防治剂和生物修复。这些策略有可能减轻农业对环境的影响,同时增加作物产量并减少化学投入。植物-微生物相互作用的研究已经因下一代测序技术、组学技术和生物信息学的进步而发生了改变
和一个锅的不同)或意图(例如通过刀与使用它进行切割),我们人类可以毫不费力地描绘出与日常生活中日常物体的这种互动。在这项工作中,我们的目标是构建一个可以同样生成合理的手动配置的计算系统。具体来说,我们学习了一个基于扩散的常规模型,该模型捕获了3D相互作用期间手和对象的关节分布。给定一个类别的描述,例如“握着板的手”,我们的生成模型可以合成人手的相对配置和表达(见图1个顶部)。我们解决的一个关键问题是,该模型是什么好的HOI表示。通常通过空间(签名)距离场来描述对象形状,但人的手通常是通过由发音变量控制的参数网格建模的。我们提出了一个均匀的HOI表示,而不是在生成模型中对这些不同的代表进行建模,并表明这允许学习一个共同生成手和对象的3D扩散模型。除了能够合成各种合理的手和物体形状的综合外,我们的扩散模型还可以在跨任务的辅助推理之前作为通用,而这种表示是所需的输出。例如,重建或预测相互作用的问题对于旨在向人类学习的机器人或试图帮助他们的虚拟助手来说是核心重要性。重建的视频重新投影错误)或约束(例如我们考虑了这些行沿着这些行的两个经过深入研究的任务:i)从日常交互剪辑中重建3D手对象形状,ii)鉴于任意对象网格,合成了合理的人类grasps。为了利用学到的生成模型作为推论的先验,我们注意到我们的扩散模型允许在任何手动对象配置给定的(近似)log-likelihood梯度计算(近似)log-likelihoodhoodhood。我们将其纳入优化框架中,该框架结合了先前的基于可能性的指南与特定于任务的目标(例如已知对象网格的合成)推理。虽然理解手动相互作用是一个非常流行的研究领域,但现实世界中的数据集限制了3D中这种相互作用的限制仍然很少。因此,我们汇总了7种不同的现实世界交互数据集,从而导致157个对象类别的相互作用长期收集,并在这些范围内训练共享模型。据我们所知,我们的工作代表了第一个可以共同生成手和对象的生成模型,并且我们表明它允许综合跨类别的各种手动相互作用。此外,我们还经验评估了基于视频的重建和人类掌握合成的任务的先前指导的推断,并发现我们所学的先验可以帮助完成这两个任务,甚至可以改善特定于特定于任务的状态方法。
其在光伏应用领域的研究引起了人们的兴趣,因为它们的量子效率已经达到了 25.5% [1],而且还扩展到辐射传感 [2,3] 和各种光电设备。[4–7] 达到高质量 MAPbI 3 、FAPbI 3 和 CsPbI 3 单晶的极限,与 MA、FA 和铯 (Cs) 阳离子混合物的组合结构成为最先进的钙钛矿材料,提高了量子效率并将结构稳定性从几天延长到几个月。[2,8–10] 由于基本物理性质接近其母结构,因此所提出的 FA 0.9 Cs 0.1 PbI 2.8 Br 0.2 可作为铅卤化物钙钛矿类的有效模型系统。与传统的 III-V 和 II-VI 半导体相比,钙钛矿在某种意义上具有反转的能带结构:价带 (VB) 态由 s 轨道形成,而导带 (CB) 态由 p 轨道贡献。强自旋轨道耦合,特别是 Rashba 效应 [11–14] 也会交换电子和空穴的自旋特性。[15,16] 因此,与晶格核的超精细相互作用由空穴而不是电子主导。钙钛矿能带结构为光学跃迁提供了清晰的极化选择规则,因此结合
深度学习技术的最新进展为协助病理学家从全切片病理图像(WSI)中预测患者的生存期带来了可能性。然而,大多数流行的方法仅适用于WSI中特定或随机选择的肿瘤区域中的采样斑块,这对于捕捉肿瘤与其周围微环境成分之间复杂相互作用的能力非常有限。事实上,肿瘤在异质性肿瘤微环境(TME)中得到支持和培育,详细分析TME及其与肿瘤的相关性对于深入分析癌症发展的机制具有重要意义。在本文中,我们考虑了肿瘤与其两个主要TME成分(即淋巴细胞和基质纤维化)之间的空间相互作用,并提出了一种用于人类癌症预后预测的肿瘤微环境相互作用引导图学习(TMEGL)算法。具体来说,我们首先选择不同类型的块作为节点来为每个 WSI 构建图。然后,提出了一种新颖的 TME 邻域组织引导图嵌入算法来学习可以保留其拓扑结构信息的节点表示。最后,应用门控图注意网络来捕获肿瘤与不同 TME 组件之间与生存相关的交集以进行临床结果预测。我们在来自癌症基因组图谱 (TCGA) 的三个癌症队列上测试了 TMEGL,实验结果表明 TMEGL 不仅优于现有的基于 WSI 的生存分析模型,而且对生存预测具有良好的可解释能力。