Devang Khakhar KJ Somaiya技术研究所,孟买,印度摘要:量子力学通过在原子和亚原子量表上提供了对物质行为的基本见解,从而改变了材料研究。这项研究的目的是研究量子力学在材料科学中的应用,重点是它对材料的性质和行为提供的见解。我们研究了核心量子力学思想,例如波颗粒二元性,schrödinger方程和量子状态,并检查这些思想如何适用于材料科学。此外,我们研究了量子力学很重要的特定领域,例如电子结构计算,频带理论和量子限制效应。本文强调了量子力学的跨学科特征及其对增加对材料的理解的巨大影响,从而使新材料的设计和发现。关键字:量子力学,材料科学,原子量表,电子结构,量子限制。
量子场论是理论物理学许多分支的重要工具。在基础物理学中,量子场论框架结合了狭义相对论和量子力学,以解释物质的亚原子结构和早期宇宙的物理学。在凝聚态物理学中,它提供了多体系统的量子描述。量子场论的第一门课程包括经典场论的介绍、欧拉-拉格朗日方程和诺特定理、狄拉克和克莱因-戈登方程、自由标量、矢量和旋量场的量化;以及从协变微扰理论、S 矩阵和费曼图中选取的一系列主题;量子电动力学中基本过程的计算;相变的场论方法;经典临界性的降维;低维系统中的临界指标;非线性 sigma 模型和拓扑解。
1 克莱蒙物理实验室 (LPC) - UMR6533,法国克莱蒙奥弗涅大学 CNRS/IN2P3,奥比埃,法国,2 LTSER “Zone Atelier Territoires Uranif è res”,克莱蒙费朗,法国,3 微生物:基因组环境实验室 (LMGE) - UMR6023,法国克莱蒙费朗克莱蒙奥弗涅大学 CNRS,4 物理和环境地理实验室 (GEOLAB) - UMR6042,法国克莱蒙费朗克莱蒙奥弗涅大学 CNRS,5 亚原子物理和相关技术实验室 (SUBATECH) - UMR6457,法国南特大学 CNRS/IN2P3/IMT Atlantique,法国南特,6 新陈代谢、微藻分子工程及应用、生物生物学实验室、压力、环境健康、IUML FR3473、法国国家科学研究院、勒芒大学、勒芒、法国
BB84协议是由Charles H. Bennett和Gilles Brassard于1984年在印度的IEEE会议上提出的。该技术采用亚原子颗粒的量子特征来产生机密密钥。钥匙的位嵌入唯一光子的极化状态。bb84使用光子的四个极化状态,即水平(0°或H极化),垂直(90°或V极化),对角线(+45°)和抗二齿(-45°)。这种方法依赖于两个至关重要的量子力学原则,即不确定性原理和无键的定理,从而提高了其安全性和可靠性。这是因为在不检测光子状态的情况下无法访问以光子状态编码的信息,从而导致其破坏。同样,根据“无关定理”,不可能在不检测到的情况下创建相同的量子状态的相同副本,因此任何试图以未经授权的方式获取访问钥匙的窃听器(称为EVE)将被暴露。这是由于她不能
量子信息和计算是一个研究领域,结合了量子力学,经典信息理论和计算机科学知识的原理,以探索信息的基本方面并开发新的计算范式。它利用量子系统的独特属性,例如叠加,纠缠,非本地性,以与现有的经典协议根本不同的方式处理和传输信息。它涵盖了广泛的应用程序,包括用于主要分解的Shor算法,超密集的编码,安全的量子键分布和量子传送。其他重点领域包括量子传感,Grover的搜索算法,量子误差校正,量子机学习和量子模拟。量子信息处理受益于精确控制和操纵亚原子颗粒。各种物理系统,例如原子,离子,光子和超导电路,是实现这些现象的基本构件。当前的艺术实验使现实生活中的量子计算成为可能。
幸运的是,麦克斯韦方程从亚原子长度尺度到银河系长度尺度都是精确的。在真空中,它们已被证实具有极高的精度(见第 1.1 节)。此外,自 20 世纪 60 年代以来的几十年里,麦克斯韦方程已经能够得到许多复杂结构的数值解。这种用数值方法求解麦克斯韦方程的领域被称为计算电磁学,本课程后面将对此进行讨论。现在有许多商业软件可以高精度地求解麦克斯韦方程。因此,如今的设计工程师不需要更高的数学和物理知识,只要学习如何使用这些商业软件就可以获得麦克斯韦方程的解。这对许多设计工程师来说是一个福音:通过运行这些软件并进行试错,就可以设计出精彩的系统。在实际制造硬件之前使用模拟进行电磁设计的艺术被称为虚拟原型。
电 - 电是电能的流动。当被称为电子的微小粒子在电路中移动时,就会产生电能。电子 - 带负电的亚原子粒子,带电时会在原子之间跳跃。电路 - 导电材料的闭合环路,电流可以通过路径从电源流到负载,再流回电源。负载 - 使用电能的组件。灯泡、电动机、电器电源 - 电能的来源。电池、太阳能电池板、发电厂、风力涡轮机路径 - 允许电子流过的导电材料。发电厂 - 将物理能转换成电能的地方。传输 - 将电能从发电地点批量移动到变电站和社区电网供消费者使用。发电 - 将一次能源(热能或动能)转化为电能的过程。可再生电力 - 由永不枯竭的可再生能源产生的电力,例如风能、太阳能、水能、生物质能。不可再生电力 - 由会耗尽的不可再生能源产生的电力,例如煤炭、石油、天然气、核能。
量子力学是物理学中的一种理论,它描述了原子和亚原子尺度上物质和能量的行为。将经典力学与量子力学进行比较,可以得出两个主要思想。首先,经典状态描述与量子状态描述有着根本的不同。在经典世界中,系统的状态可以用位置和动量的精确值来描述。另一方面,量子物理学使用波函数来描述状态,波函数可以表示位置和动量等可观测量的测量结果的概率。其次,在经典领域,每个粒子的行为及其与其他粒子的相互作用都是可预测的。更重要的是,如果对粒子进行两次测量,实验结果(如果粒子没有被修改)在整个时间内都是不变的。然而,量子物理学是非直观的。状态和测量之间的关系是不确定的,并且会随着时间而变化。如果对一个粒子进行两次测量,得到的结果可能是随机的和意想不到的。因此,量子力学是非确定性的,这意味着它不能完全精确地描述物理系统的行为(是概率性的)。
欢迎介绍量子计算!在本课程中,我们将从理论计算机科学的角度探讨量子计算的主题。作为预示的亚伯拉罕·佩斯(Abraham Pais)的引用,我们的故事将涉及令人惊讶的曲折,这似乎与您对周围世界的看法完全不符。的确,在量子世界中,单个粒子可以同时在两个地方。两个粒子可以非常“绑定”,以至于即使相隔光年,它们也可以立即进行通信。 “看”量子系统的行为可以不可逆转地改变系统本身!正是这些量子力学的怪癖,我们旨在在计算研究中利用。量子计算的基本前提是“简单”:构建一台计算机,其位不是由晶体管代表的,而是由亚原子粒子(例如电子或光子)代表。在这个亚原子世界中,相关物理定律不再是牛顿的经典力学,而是量子力学定律。因此,名称为“量子计算”。为什么我们要构建这样的计算机?有很多原因。从工程的角度来看,微芯片组件变得如此小,以至于遇到量子效应,从而阻碍了其功能。对物理学家来说,量子计算的研究是一种自然的方法,用于模拟和研究自然界的量子系统。对于计算机科学家来说,量子计算机非常出色,因为它们可以解决在古典计算机上被认为是棘手的问题!量子计算领域可以说是从著名的物理学家理查德·芬曼(Richard Feynman)的想法(1982)开始,用于有效模拟物理系统(尽管应该指出的是,基于量子力学的冷冻术的想法可以追溯到1970年左右的斯蒂芬·维斯纳(Stephen Wiesner),这是现在,在1970年左右的史蒂芬·维斯纳(Stephen Wiesner)),无法在单一课程中捕捉到太大了。在这里,我们将重点关注广泛的介绍,旨在涵盖以下主题:什么是量子力学,以及如何利用构建计算机?这样的计算机可以解决什么样的计算问题?对于量子计算机来说,是否有困难的问题?最后,量子计算的研究告诉我们关于自然本身的什么?即使本课程是您最后一次遇到量子计算的话题,经验也应该希望您对物理和计算限制之间的良好相互作用,并增强线性代数的背景,这在许多其他计算机科学领域都有用。整个课程将在线性代数的数学框架中进行,我们现在审查。在进行课程之前,您要熟悉这些概念至关重要。这些笔记包含许多旨在帮助读者的练习;强烈建议您在阅读时对其进行处理。
摘要。第一次量子革命始于 20 世纪初,其特点是在亚原子层面探索物理学。随后在 20 世纪 70 年代左右又发生了第二次革命,见证了量子物理学在量子技术发展中的应用。目前,量子技术在世界大部分地区都越来越受欢迎。然而,除了在量子物理学方面有创新的历史外,非洲在每次量子革命中都落后了。因此,本文强调了与量子技术相关的挑战,并指出了量子技术为缩小差距、推动非洲经济增长和发展带来的机遇。后者可以通过量子技术知识的能力培养和民主化来实现。这一举措反过来将确保非洲在第二次量子革命中得到充分代表。最后,在本文中,我们介绍了一个新的发展框架,即量子技术发展 (QT4D),并探讨了非洲如何部署该框架来推动量子技术的采用和使用,并成为主流计算领域的一部分。这将使非洲能够将这些技术应用于空间通信、金融、药物开发和材料科学,从而解决一些日常挑战并为促进经济增长和发展的行业开辟新的机遇。