欢迎介绍量子计算!在本课程中,我们将从理论计算机科学的角度探讨量子计算的主题。作为预示的亚伯拉罕·佩斯(Abraham Pais)的引用,我们的故事将涉及令人惊讶的曲折,这似乎与您对周围世界的看法完全不符。的确,在量子世界中,单个粒子可以同时在两个地方。两个粒子可以非常“绑定”,以至于即使相隔光年,它们也可以立即进行通信。 “看”量子系统的行为可以不可逆转地改变系统本身!正是这些量子力学的怪癖,我们旨在在计算研究中利用。量子计算的基本前提是“简单”:构建一台计算机,其位不是由晶体管代表的,而是由亚原子粒子(例如电子或光子)代表。在这个亚原子世界中,相关物理定律不再是牛顿的经典力学,而是量子力学定律。因此,名称为“量子计算”。为什么我们要构建这样的计算机?有很多原因。从工程的角度来看,微芯片组件变得如此小,以至于遇到量子效应,从而阻碍了其功能。对物理学家来说,量子计算的研究是一种自然的方法,用于模拟和研究自然界的量子系统。对于计算机科学家来说,量子计算机非常出色,因为它们可以解决在古典计算机上被认为是棘手的问题!量子计算领域可以说是从著名的物理学家理查德·芬曼(Richard Feynman)的想法(1982)开始,用于有效模拟物理系统(尽管应该指出的是,基于量子力学的冷冻术的想法可以追溯到1970年左右的斯蒂芬·维斯纳(Stephen Wiesner),这是现在,在1970年左右的史蒂芬·维斯纳(Stephen Wiesner)),无法在单一课程中捕捉到太大了。在这里,我们将重点关注广泛的介绍,旨在涵盖以下主题:什么是量子力学,以及如何利用构建计算机?这样的计算机可以解决什么样的计算问题?对于量子计算机来说,是否有困难的问题?最后,量子计算的研究告诉我们关于自然本身的什么?即使本课程是您最后一次遇到量子计算的话题,经验也应该希望您对物理和计算限制之间的良好相互作用,并增强线性代数的背景,这在许多其他计算机科学领域都有用。整个课程将在线性代数的数学框架中进行,我们现在审查。在进行课程之前,您要熟悉这些概念至关重要。这些笔记包含许多旨在帮助读者的练习;强烈建议您在阅读时对其进行处理。
主要关键词