许多神经退行性疾病是由于离子通道功能和突变改变引起的。细胞内氧化还原状态可以显着改变离子通道的门控特征。已经记录了与氧化应激相关的丰富神经退行性疾病,包括帕金森氏症,阿尔茨海默氏症,脊椎脑性共济失调,肌萎缩性侧面硬化症和亨廷顿病。活性氧和氮种化合物触发了靶向负责通道组装的亚基内特定位点的翻译后变化。这些改变包括通过活性氧(ROS),硝化和S-硝基化诱导的氧化还原反应调整半胱氨酸残基,并通过过氧亚硝酸盐的酪氨酸残基的一氧化氮辅助。几个离子通道已直接研究了其对氧化剂和氧化应激的功能反应。本综述主要探讨氧化应激与离子通道之间的关系和潜在联系,例如小脑共济失调和帕金森氏病。氧化应激与离子通道之间的潜在相关性可以保持开发常见神经退行性疾病的创新疗法的希望。
大多数当前的CSP植物都将硝酸盐盐混合物作为热存储介质。这些盐被用作纯粹明智的能量存储,在充电/放电周期期间,液态盐在冷水和冷罐之间抽水。由于硝酸盐降解为亚硝酸盐时发生的腐蚀引起的,这些系统限于大约560°C [2]。下一代CSP计划在更高的温度下运行,因此需要在650°C或更多的温度下运行的热量储能介质[1]。由于硝酸盐将在这些温度下分解,因此正在研究其他类型的盐,例如氟化物,氯化物和碳酸盐,以用于热量储能应用[3-7]。熔融氟化物盐已将大量研究重点视为传热液,并且是熔融盐反应器中核燃料的载体[8]。熔融氯化盐最近已经从CSP工业中获得了极大的兴趣,这主要是由于美国领导的GEN3 CSP项目,该项目旨在使用氯化物三元盐作为明智的热量储能培养基和高达800°C的温度下的热传递流体[9-12]。
土地和海洋之间红树林生态系统的独特定位使它们在氮循环中至关重要。硝化在氮循环中的作用对于提供红树林易于吸收的氮化合物很重要。然而,红树林地区的硝化过程和硝化细菌尚未全面理解。这项研究的主要目的是通过进行系统的综述,对红树林沉积物中的硝化细菌进行全面分析。系统评价和荟萃分析方法的首选报告项目被用作有助于系统地报告评论的指南,并具有流程图以显示选择相关研究的过程。数据收集是通过使用6个数据库和包括Scopus,PubMed,ResearchGate,Google Scholar和Springer在内的期刊搜索引擎进行的,以实现更全面的发现。这项研究采用了广泛认可且常用的技术,通过首先识别人口,干预,比较和结果来以重点方式定义评论的范围。这项研究确定了358项研究,筛查后审查中包括了31项研究。基于筛查结果,关于红树林沉积物中硝化细菌的研究在地理上仅限于印度尼西亚,越南,泰国,中国,墨西哥,美国,印度和沙特阿拉伯等多个国家。氨氧化细菌通常是主要的群体,但是各种硝化细菌基团在不同的红树林环境中分布多样。这项研究表明,在红树林沉积物中硝化细菌之间存在高度的多样性,五个不同的组鉴定出来:氨氧化细菌,亚硝酸盐氧化细菌,厌氧菌细菌和comammammox细菌,最近鉴定出的组。在进行氮化合物的变化时,从硝化过程的不同步骤中使用功能基因的硝化作用,例如硝酸氨基酶,单加氧酶亚基A,亚硝酸盐氧化剂氧化液亚基A,硝酸盐亚基亚基,硝酸盐还原链链酶,一氧化氧酶,氮的再生氮,氢氮合酶,肼氧化还原酶和羟胺氧化还原酶基因。这项研究还表明了红树林沉积物中的植被类型和硝化细菌的分布。这些沉积物的深度通常从0到60厘米不等,大多数样品以0到20厘米的深度采集。采样位置的植被类型由Kandelia Candel,Avicennia Marina,Kandelia Obovata和Rhizophora Mangle的种类主导。关于硝化细菌在红树林沉积物中的限制为深入研究提供了机会。这项全面的综述提供了对硝化细菌的多样性和传播的深入概述,强调了它们在氮循环中的作用,并强调了发现红树林沉积物中新硝化细菌的潜力。
简介电解质溶液是典型的锂离子电池的关键部分,由Li盐组成(例如,LIPF 6)和有机碳酸盐。基于磷的和其他有机产品的分解和形成已经开始在电解质的生产阶段。只要数量足够低,这种分子的形成就不会对电解质/电池质量产生负面影响。相反,几种分解产物对LIB阳极上所谓的SEI表面(实心电解质界面)的形成具有积极影响,这对于电池功能至关重要。尽管如此,这是一个连续的化学过程,某些分解产物的增加数量是电池/电解质的进行性衰老的明显指标。该应用证明了对试验二磷酸盐的GCMS分析作为碳酸盐和LIPF 6盐的反应产物。选择该化合物作为电化学电池老化的标记是由于以下事实,它们的形成非常慢,仅取决于一些外部参数,从而可以通过对分析物含量之前/后的简单比较来研究电化学老化(电荷/放电)。
对巴马科皮肤病医院 (HDB) 污水处理站(该污水处理站采用活性污泥法)处理后的水的物理化学质量进行了研究,以确定处理后的水的物理化学参数。本研究的总体目标是评估巴马科皮肤病医院废水处理系统的有效性。为了获得水样,我们在污水处理站入口和出口处的不同隔间中进行了五 (5) 次实验,采集了十 (10) 个水样。结果和获得的减排率表明,HDB WWTP 处理需要额外的处理以确保环境和健康安全,来自 HDB(系统入口)的处理后的废水表现出减排率超载指标,例如磷酸盐的值为(- 47.67%),钴(-28.81%),银(-10.29%),亚硝酸盐(-632.71%),硝酸盐(-85.40%),硫酸盐(-6.15%)和氟化物(-56.54%)。pH(0.03%),电导率(5.1%),温度(1.60%)和溶解氧(35.82%)的去除值较低。浊度的值为(67.42%),MES(48.63%),氯化物(53.69%),镍(83.69%)和锰(55.02%)显示出相当大的减少率。然而,在排放口处观察到的某些污染参数(MES、NO2-和PO43-)高于马里排放到自然界的标准。
环境污染是由从不同地区排放生物废水而没有适当治疗,管理和利用而引起的。这导致了大量废物的积累,这反过来又会造成许多不可预测的问题,并进一步促进环境污染。考虑到世界各地的粮食生产设施(例如乳制品行业,啤酒厂和制糖行业)的广泛存在,因此食品行业的污水废料构成了此问题的重要部分。因此,人类必须优先考虑有效的废物处理方法,而生物降解是一个有前途的过程,可以帮助将废物转化为危险较小的形式。生物废物的自然处置在很大程度上依赖于许多微生物的协作作用,包括细菌,放线菌,霉菌和酵母。这些微生物在分解废物的有机成分和无机成分中起着至关重要的作用,最终将它们转化为无害的最终产品。这样的过程包括三个主要阶段:矿化,涉及有机碳的氧化;硝化,微生物通过亚硝酸盐氧化为硝酸盐;和反硝化,这是将硝酸盐还原为氮气,这是氮循环的关键组成部分。这个周期本质上促进了资源的回收利用。
环境污染是由不同地区排放的生物废水未经适当处理、管理和利用而造成的。这导致大量废物的积累,进而可能造成许多不可预测的问题,并进一步加剧环境污染。值得注意的是,考虑到世界各地广泛存在食品生产设施,如乳制品工业、酿酒厂和制糖业,食品工业产生的污水废物是这一问题的主要部分。因此,人类必须优先考虑有效的废物处理方法,而生物降解是一种有前途的过程,可以帮助将废物转化为危害较小的形式。生物废物的自然处理在很大程度上依赖于许多微生物群的协同作用,包括细菌、放线菌、霉菌和酵母。这些微生物在分解废物的有机和无机成分方面发挥着至关重要的作用,最终将它们转化为无害的最终产品。这一过程包括三个主要阶段:矿化,涉及有机碳的氧化;硝化,微生物通过亚硝酸盐将氨氧化为硝酸盐;反硝化作用是将硝酸盐还原为氮气,这是氮循环的关键组成部分。这一循环本质上促进了资源的循环利用。
塑料为微生物(质体)提供了新的利基市场。塑料废物的排放量不断增加,因此重要的是要了解塑料和相关效果的微生物生态学。在这里,我们介绍了塑料的全球细纹,分析了从淡水,海水和陆地生态系统收集的样品。与天然hab-itats相比,塑料组装具有明显更高的异质性和更确定性主导的组装的独特微生物群落。新的共存模式 - 在自然栖息地很少发现的微生物之间的宽松而脆弱的网络 - 在质体中很少发现。塑料微生物组通常具有代谢有机化合物的巨大潜力,这可以加速碳转换。在质体中涉及氮循环中涉及的微生物也发生了变化,尤其是在淡水质体中,在淡水质体中,大量的硝酸盐可能会增加一亚硝酸盐(水生毒物)和氧化二氮(温室气)的释放。富集苯,植物和人类病原体意味着塑料可能成为有害微生物的流动储层。我们的发现强调,如果塑料排放的轨迹没有逆转,那么扩展的塑料可能会带来关键的行星健康挑战。
描述了蒂特斯勒和桑德霍尔策在1936年提出并证明了使用半固体培养基来验证细菌的动力。在1967年,Le Minor解决了此问题,并将少量硝酸钾添加到培养基中,该培养基抑制了发酵气体的产生,同时允许验证硝酸盐的还原。与三糖琼脂一起使用时,这种液体运动性,甘露醇和硝酸盐培养基可以在乳糖阴性肠杆菌和非临床样品中的非发酵革兰氏阴性杆菌之间快速分化。技术通过将播种针驱动到管的底部并在36±1°C孵育20-24小时来接种培养基。孵育后,通过在培养基表面上沉积4-6滴磺胺酸,然后进行等量等量的α-萘基胺,进行硝酸盐测试。亮红色环的出现表明硝酸盐还原为亚硝酸盐的阳性测试。如果不发生颜色,则应添加一点锌粉。如果当时出现红色,则表明存在硝酸盐而不减少的硝酸盐,相反,如果红色继续而没有发生,则硝酸盐的总还原为氮。介质从红色变为黄色的颜色变化表示甘露醇的发酵。
摘要:Ikorodu打火机终端是尼日利亚拉各斯的重要泻湖港口。但是,港口周围发生的强烈人为活动可能会污染水。这项研究评估了人类暴露于港口周围水的安全性。测定水的样品进行物理化学参数,即:电导率,生化氧需求(BOD),总悬浮固体(TSS),总溶解固体(TDS),pH值,pH,浊度,硬度,硬度,钙,钙,氯化物,氯化物,氯化物,硫酸盐,硫酸盐,硝酸盐,硝酸盐和磷酸盐。此外,分析了重金属,包括铅,锰,铜,镉,镍和铬,并使用其价值来估计潜在的健康风险。还测定了微生物的存在。水样有不可渗透水平的亚硝酸盐,油和油脂以及BOD。除Ni以外,重金属的浓度及其平均每日摄入和平均每日皮肤暴露在可耐受的极限之内。然而,他们的危险商和致癌风险通过摄入和真皮接触超过了可忍受的极限。在水中检测到细菌,大肠菌群和真菌的安全水平。基于这些结果,水可能会使用户面临健康危害。有必要采取政策,以确保人类接触水的安全。