基因组浏览定义为低通序的覆盖范围低于0.05倍,通常用于线粒体基因组恢复和物种鉴定。长阅读的纳米孔测序仪可以同时阅读DNA序列和甲基化,并且可以多重样品进行低成本基因组练习。在这里,我将纳米孔测序作为全球DNA甲基化和转座子评估的高度精确平台。仅覆盖0.001×或30 MB的读数,精度为1%。生物学和技术复制可验证高精度。浏览40种脊椎动物物种揭示了与全基因组亚硫酸盐测序一致的全球甲基化模式,平均地图率> 97%。基因组大小与全局DNA甲基化直接相关,解释了其39%的方差。只能以0.0001倍的覆盖范围或3 MB的读数来获得小鼠和灵长类动物中的精确正弦和线转座子甲基化。样品多路复用,现场可移植性和该仪器的低价合并,使基因组掠过DNA甲基化成为一种可访问的方法,用于从生态学到流行病学和低资源组的表观遗传评估。
产品描述有效检测和量化DNA甲基化的能力(即5-甲基胞嘧啶)对于基于表观遗传学的研究至关重要。迄今为止,为此目的开发了几种方法,包括高性能毛细血管电泳,亚硫酸盐测序和甲基化的DNA免疫沉淀。5-MC DNA ELISA试剂盒是一种方便且功能强大的工具,可让研究人员在不到3小时的时间内准确定量5-MC。该试剂盒具有独特的抗5-甲基环胞嘧啶单克隆抗体,对5-MC既敏感又具有特异性。该测定法与脊椎动物,植物和微生物源以及PCR扩增子和碎片DNA的广泛输入DNA兼容。5-MC在DNA样品中可以从具有特殊设计的对照中生成的标准曲线中准确量化。 这个快速的简化工作流也是高通量分析的理想选择。5-MC在DNA样品中可以从具有特殊设计的对照中生成的标准曲线中准确量化。这个快速的简化工作流也是高通量分析的理想选择。
用途:EpiNext™ DNA 文库制备试剂盒 (Illumina) 适用于使用 Illumina 测序仪为下一代测序应用制备 DNA 文库,包括基因组 DNA 测序、ChIP 测序、MeDIP/hMeDIP 测序、亚硫酸盐测序和靶向重测序。该试剂盒的优化方案和组件允许快速构建非条形码 (单重) 和条形码 (多重) DNA 文库,并减少偏差。起始材料和输入量:起始材料可以包括从各种组织或细胞样本中分离的碎片 dsDNA、从 ChIP 反应、MeDIP/hMeDIP 反应或外显子捕获中富集的 dsDNA。DNA 应相对不含 RNA,因为大量的 RNA 会损害末端修复和 dA 尾部,从而降低连接能力。DNA 的输入量可以是 5 ng 到 1 ug。为了获得最佳制备效果,输入量应为 100 ng 到 200 ng。对于无扩增,需要 500 ng 或更多。注意事项:为避免交叉污染,请小心地将样品或溶液移入试管/小瓶中。使用气溶胶屏障移液器吸头,并在液体转移之间始终更换移液器吸头。整个过程中都要戴手套。如果手套和样品接触,请立即更换手套。
被诊断患有 KMT2A 重排 ( KMT2A -r) 急性淋巴细胞白血病 (ALL) 的 1 岁以下婴儿,尽管接受了强化治疗,但仍面临无法缓解、复发和因白血病死亡的高风险。婴儿 KMT2A -r ALL 母细胞的特征是 DNA 高甲基化。临床前研究表明,DNA 甲基转移酶抑制剂的表观遗传启动会增加化疗的细胞毒性。儿童肿瘤学组试验 AALL15P1 测试了在第 6 天开始化疗之前立即进行 5 天阿扎胞苷治疗的安全性和耐受性,在四个诱导后化疗疗程中,适用于新诊断为 KMT2A -r ALL 的婴儿。治疗耐受性良好,31 名可评估患者中只有 2 名 (6.5%) 出现剂量限制性毒性。外周血单核细胞全基因组亚硫酸盐测序表明,在接受阿扎胞苷治疗 5 天后,87% 的样本的 DNA 甲基化降低。无事件生存率与之前对新诊断婴儿 ALL 的研究结果相似。阿扎胞苷是安全的,可降低 KMT2A -r ALL 婴儿外周血单核细胞的 DNA 甲基化,但加入阿扎胞苷以增强细胞毒性不会影响生存率。Clinicaltrials.gov 标识符:NCT02828358。
摘要:乳头状甲状腺癌(PTC)是最常见的甲状腺恶性肿瘤类型,女性发病率增加。X染色体遗传的特定特征可能与PTC易感性的性别差异有关。这项研究的目的是研究两个X连锁基因,即叉子盒P3(FOXP3)和蛋白质磷酸酶1调节性亚基3F(PPP1R3F)与PTC倾向和性别差异的关联。参加了1006名PTC患者,并参与了相等数量的匹配健康志愿者。RS3761548(FOXP3)和RS5953283(PPP1R3F)的基因分型是使用聚合酶链反应 - 限制性片段长度多态性测定(PCR-RFLP)进行的。使用亚硫酸盐限制分析(COBRA)方法评估FOXP3的甲基化状态。SPSS软件用于统计分析。性别分层分析表明,CA和AA基因型以及FOXP3 RS3761548变体的AR等位基因仅与女性中的PTC倾向有关。此外,在PTC女性患者之间,携带CA和CC基因型以及对照组的PTC女性患者之间观察到Foxp3的启动子基因座的不同甲基化状态。两者揭示的关联都可以通过减少与免疫相关血细胞中报道的FOXP3表达来解释女性的PTC发病率更高。
摘要 指甲是角质结构。指甲板负责药物的渗透。由于指甲板足够硬,药物很难渗透,只有一小部分外用药物能够渗透过去。因此,药物无法达到有效的治疗浓度。指甲板可能由于光泽度降低而出现异常。指甲床受到影响、血液供应减少、指甲床的物理或化学特性降低。因此,各种疾病都可能因此发生。1 口服疗法伴有全身副作用和药物相互作用,而外用疗法则受限于指甲板的低渗透率。这些疾病可以通过指甲药物输送系统达到所需的治疗药物浓度来治愈。人类指甲不仅具有保护和装饰作用,还可以被视为药物输送的替代途径,尤其是在治疗甲真菌病或牛皮癣等指甲疾病方面。物理技术(手动和电动指甲磨损、酸蚀、激光消融、微孔、应用低频超声波和电流)和化学物质(硫醇、亚硫酸盐、过氧化氢、尿素、水、酶)已证明能增强指甲的反应性。为了有效地进行局部治疗,必须增强真菌药物的渗透性。3 这可以通过使用物理技术或化学药剂破坏指甲板来实现。或者,可以通过离子电渗疗法或通过在载体中配制药物来促进药物渗透到完整的指甲板中,从而使药物从载体中分离出来并进入指甲板。关键词:指甲药物输送、甲癣、离子电渗疗法、牛皮癣。
摘要背景:孕妇接触空气污染物与多种不良妊娠结局有关,包括复发性流产(RSA)。但其潜在机制仍不清楚。本研究旨在了解RSA的机制及其与空气污染暴露的关系。我们通过批量RNA测序(RNA-seq)、简化代表性亚硫酸盐测序(RRBS)和单细胞RNA测序(scRNA-seq)比较了人工流产个体和RSA个体的蜕膜组织数据。使用RT-qPCR和焦磷酸测序验证差异表达基因(DEG)。使用逻辑回归模型研究空气污染物暴露与RSA之间的关联。结果:我们通过重叠RRBS和RNA-seq数据鉴定出98个具有异常甲基化的DEG。鉴定出19种免疫细胞亚群。与正常对照相比,NK细胞和巨噬细胞在RSA患者蜕膜中的比例不同。我们观察到 RSA 患者和对照组之间的 IGF2BP1 甲基化和表达存在差异。此外,我们观察到孕前一年和孕早期母亲接触空气污染物与 RSA 风险之间存在显著的正相关性。中介分析表明,空气污染对 RSA 风险的影响中有 24.5% 是通过 IGF2BP1 甲基化介导的。结论:这些发现揭示了 RSA 的全面细胞和分子机制,并表明空气污染可能通过影响 IGF2BP1 启动子的甲基化水平导致妊娠丢失。关键词:RSA、scRNA-seq、RRBS、空气污染物、PLS-PM
摘要:使用非侵入性液体活检的无细胞DNA(CFDNA)分析是一种新兴的癌症检测和干预方法。不同的分析方法用于研究CFDNA特征,从而产生了组合不同数据所需的昂贵且较长的分析过程。这项研究研究了在早期结直肠癌检测的背景下,使用CFDNA数据转换用于甲基化分析的CFDNA数据将CFDNA片段大小与拷贝数变化(CNV)相结合。具体而言,我们专注于比较酶和硫酸硫酸盐转换的数据,用于评估属于染色体18的CfDNA片段。染色体18染色体通常在结直肠癌中被删除。我们使用了18号染色体的短和中cfDNA片段的数量,并在一组2959个区域训练了线性模型(LDA),以预测独立的测试集中的早期(I-IIA)结直肠癌。总共获得了87.5%的灵敏度和92%的特异性,在酶转化的文库上获得了。重复亚硫酸盐转换数据上相同的工作流程,其敏感性为58.3%,从而得出较低的精度结果,这意味着酶转化可在整个基因组数据中保留比Bisulfite转化率更好的癌症片段化足迹。这些结果可以作为在同一数据集上使用碎片化和甲基化方法早期检测到结直肠癌的新途径。
目的:分析长期抗阻训练或耐力训练引起的野生型小鼠海马全基因组表观基因组和转录组变化。方法:我们对小鼠海马进行 4 周特定训练后进行全基因组亚硫酸盐测序 (WGBS) 和 RNA 测序 (RNA-seq)。此外,我们在干预前后使用了一种新颖的物体识别测试来确定锻炼是否导致认知功能的改善。结果:虽然本研究中发现的大多数 DNA 甲基化变化都是训练模型特有的,但大多数与低甲基化有关,并且在相似的组蛋白标记、染色质状态和转录因子结合位点中富集。值得强调的是,Tet1 结合位点 DNA 甲基化的缺失与基因表达变化之间存在显著关联,表明这些表观基因组变化在转录调控中的重要性。然而,耐力和阻力训练激活不同的基因通路,耐力训练激活的基因通路与神经可塑性有关,阻力训练激活的基因通路与干扰素反应通路有关,这似乎也与学习和记忆功能的改善有关。结论:我们的研究结果有助于理解不同运动模式对大脑健康产生有益影响的分子机制,并为未来的研究提供新的潜在治疗靶点。2021 作者。由 Elsevier GmbH 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
当前的化学测试策略的检测能力有限,其检测非生物毒性致癌物(NGTXC)的能力受到限制。表观遗传异常在癌变期间发生,无论分子启动事件是否与遗传毒性(GTXC)或NGTXC事件有关;因此,可以利用表观遗传标记来开发新的方法方法,以改善两种类型的致癌物的检测。这项研究使用叙利亚仓鼠胎儿细胞来建立致癌物诱导的DNA甲基化从原代细胞变化,直到衰老 - 衰老,这是必不可少的致癌步骤。将暴露于溶剂对照7天的细胞与幼稚的原发性培养物进行了比较,与苯并[a] pyrene暴露了7天的细胞,以及随后转化阶段的细胞:正常菌落,形态转化的菌落,衰老,衰老,衰老,bypass和持续的扩散。DNA甲基化变化通过降低的代表性亚硫酸盐测序在第7天最少。在细胞衰老过程中产生了深刻的DNA甲基化变化,其中一些早期差异甲基化区域(DMR)通过最终的持续性促进阶段保留。通过Pyrosequencing验证了一组这些DMR(例如POU4F1,AIFM3,B3GALNT2,BHLHE22,GJA8,KLF17和L1L),并通过Pyrosequencing验证,并在从不同的实验室中获得的多个克隆中证实了它们的可重复性。这些DNA甲基化变化可以用作生物标志物,以增强对细胞转化的客观性和机械理解,并可用于预测衰老 - 肿瘤和化学致癌性。