感光聚酰亚胺 (PSPI) 作为微电子工业中的绝缘材料引起了广泛关注,并且可以直接进行图案化以简化加工步骤。本文回顾了最近关于 PSPI 的开发工作。在简要介绍之后,描述了典型的 PSPI 配方并与传统方法进行了比较,然后介绍了图案化的主要策略。然后将最近关于 PSPI 的许多报告分为两个主要术语:正性工作和负性工作,并重点介绍了它们的化学性质直至图案形成。除了本综述中提到的 PSPI 的光敏性之外,还讨论了其他重要主题,例如低温酰亚胺化和低介电常数。关键词:感光聚酰亚胺 / 聚酰胺酸 / 感光化合物 / 重氮萘醌 / 光化学放大 / 光酸发生器 / 光碱发生器 / 低温酰亚胺化 /
摘要:本文介绍了一种使用聚合物纳米片作为纳米粘合剂在聚酰亚胺薄膜上制备铜层的技术。我们采用了两种功能性聚合物纳米片:一种用作粘合层,另一种用作模板层以吸附金纳米粒子,而金纳米粒子则用作化学镀的催化剂。光反应性聚合物纳米片用于增加铜层和聚酰亚胺之间的粘附力。此外,阳离子聚合物纳米片用于吸附用于化学镀铜的金催化剂。应用该技术,化学镀铜牢固地附着在聚酰亚胺薄膜上。通过对聚合物纳米片进行光刻,可以制造微米铜线。使用聚合物纳米片作为粘合剂的工艺不需要对聚酰亚胺基板进行表面改性,并且可以制造微尺度铜线而不会排放有害废物。因此,该技术可用于下一代柔性印刷电路板制造。 [doi:10.1295/polymj.PJ2006099] 关键词 柔性印刷电路板 / 聚合物纳米片 / 化学镀铜 / 纳米粘合剂 /
聚酰亚胺是半导体工业中广泛使用的介电材料。然而,固化反应过程中产生的气体会腐蚀电子电路,从而导致可靠性问题。可以使用 EGA-MS(使用 Double-Shot Pyrolyzer)(技术说明编号 PYA3-001)以及 TGA 研究这种气体释放。图 1 显示了聚酰亚胺薄膜的固化反应。首先,将 BPDA 和 3,3'-DDS 在较低温度下加热以生成聚酰胺酸。接下来,将材料进一步加热到较高温度以生成固化的聚酰亚胺。TGA 曲线(图 2)显示了固化过程中的重量损失。在 100~350ºC 和 350~450ºC 处可以清楚地看到两个不同的反应阶段。图 3 显示了 EGA-MS 对此过程的研究结果。图 2 中第一阶段 TGA 重量损失与图 3 区域 A 中演化的材料相匹配,第二阶段重量损失与区域 B 中的 EGA-MS 数据相匹配。EGA 产生的化合物通过 GC 分离和测定。使用 MS,选择离子监测显示图 3 中一些感兴趣的化合物的分布。这些结果表明,DMAc、CO2 和 H2O 是在固化过程的第一阶段产生的,而 CO2、SO2 和苯胺是在第二阶段产生的。正如这个例子所示,EGA 是解决聚合物材料问题的极其有用的工具。
材料已得到广泛研究 [1-9]。在许多此类研究中,已报告了机械性能的显著变化和各种形式的水分引起的损坏 [4-8]。例如,吸收的水分已被证明会降低树脂的玻璃化转变温度 T~ [4,5],降低复合材料的基质主导性能,如横向拉伸强度和层内剪切强度 [4-6],并导致树脂膨胀,从而引起残余应力并导致微裂纹的形成 [5, 7-10]。吸收水分的这些有害影响被归因于树脂基质的塑化和降解以及纤维基质界面的降解 [5-10]。迄今为止,大多数水分研究都涉及热固性基质复合材料(例如石墨/环氧树脂),这些复合材料在 95% 至 100% 相对湿度环境中会吸收高达 1.2% 至 2% 的重量水分(纤维体积分数 v r 在 60% 至 68% 之间)[1,2,5-7]。最近,已经开发出热塑性(半结晶和非晶态)基质复合材料,与热固性基质复合材料相比,它们吸收的水分非常少 [3,4]。这种系统的一个例子是热塑性基质复合材料,由非晶态聚酰亚胺基质 Avimid | K3B 组成,并用 Magnamite | IM7 石墨增强
新颖的聚酰亚胺堆积材料,用于高线制造高什岛,田中Shigeru tanaka,汉字木木木马斯拉·尼西纳卡(Masaru Nishinaka)和日本摘要的Mutsuaki Murakami Kaneka Corporation,我们摘要我们已经开发了一种新的热量型材料,以高效率堆积的pwbs高speed speed i/o o i/o o i sep speeed i/o o o i/sep speed i/o o i/o o o i/o。这些PWB满足以下要求;精细电路,低介电特性和出色的机械性能的良好加工性。我们提出的聚酰亚胺堆积材料显示出3.1的介电常数(DK),介电损耗(DF)为0.01(在1GHz时)。此外,机械性能以下材料显示;低温膨胀系数(CTE)为45ppm,拉伸强度为100MPa。尽管材料的表面粗糙度低于200米,但我们还是成功地沉积了具有非常高的果皮强度的无电镀层铜层。这意味着即使使用常规的半添加过程,该材料也适用于制造精细的电路。实际上,我们可以制作一个小于10micron l/s(线路和空间)的精细电路。近年来,需要电子设备具有许多功能和高处理速度。为了满足这些要求,像高性能CPU这样的IC芯片已经演变为具有高时钟频率和高I/O数字。要将CPU安装到基板上,通常采用翻转芯片附件方法以表现出CPU的最大性能,因此基板必须具有高接线密度。堆积的PWB,其电路是由半粘液方法形成的,这些底物已使用。下一代CPU的下一代堆积PWB,预计将具有较高的I/O数字,必须具有小于20微米L/s(线路和空间)的精细电路。对于制造精细的电路,对于构建材料而言,形成细缝电路的构建材料很重要,可以尽可能地具有少量的表面粗糙度,并且能够在不剥落的情况下粘附电路。环氧树脂主要用于堆积材料。处理环氧类型的堆积材料,以使材料的表面粗糙,并通过锚固效果牢固地粘附电路。为了制造小于20微米L/s的下一代细缝电路,需要一种新的堆积材料,其表面粗糙度比现有材料的表面粗糙度较小,并且对电路的良好粘合度。此外,新的积累材料必须具有低CTE(热膨胀系数)和低介电性能,这将改善堆积PWBS的电气可靠性或电气性能。为了开发下一代堆积材料,我们开始开发一种新的聚酰亚胺积聚材料,该材料基于用于电绝缘材料的聚酰亚胺树脂的特性,该材料期望具有出色的性质。由于这项研究,我们开发了一种新型的热固性聚酰亚胺积聚材料,该材料符合上述要求。在这项调查中,副本在本文中,评估了材料上无电镀层铜层的吉赫兹(GHz)周围的热性能,介电特性,通过可加工性能通过可加工性能通过激光进行细插电路的加工性。首先设计了新堆积材料的目标特性,设计了新堆积材料的目标特性。- - 一个小于50 ppm--的热膨胀系数(CTE)的介电损耗(DF)小于0.010,在1GHz- -a机械强度上,在100MPA-抗性的机械强度上,没有卤化的化合物 - 乘积构建的精细材料构建均超过20个微观的构建,构建均超过20个微观的过程,该过程的构建均超过20个,构建的启动构建的开发型构建均超过20个,构建的开发型构建均超过20次,构建了启用的新构建。堆积材料的表面以通过半添加过程制造精细的电路,堆积材料需要具有少量表面粗糙度的表面,并且具有较高的果皮强度,并具有无电镀层铜层。
7 ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. -2模式L结构-3 ............................................................................................................................................................................................................................................................................................................. 4 ....................................................................................................................................................................................... ....................................................................................................................................................................................................................................................................................................................................................................... 6 2.2建模.................................................................................................................................................................................................................................