最佳五篇出版物 R Bhattacharyya、S Mukherjee,通过非线性回归进行模糊隶属函数评估:一种算法方法,模糊信息与工程,12(4),412–434,2021 [Taylor & Francis 出版物] GSM Thakur、R Bhattacharyya、S Sarkar。使用 Dempster–Shafer 证据理论进行股票投资组合选择,沙特国王大学杂志——计算机与信息科学版。30(2),223 - 235 2018 [ELSEVIER 出版物] [影响因子:13.473] R Bhattacharyya、SA Hossain、S Kar。用于投资组合选择的模糊交叉熵、均值、方差、偏度模型。沙特国王大学杂志——计算机与信息科学版。 26, 79 – 87, 2014 [ELSEVIER 出版物] [影响因子:13.473] R Bhattacharyya、P Kumar、S Kar。相互依赖项目的模糊研发组合选择。计算机与应用数学。62(10),3857-3870,2011 [ELSEVIER 出版物]。[影响因子:3.476] R Bhattacharyya、S Kar、DD Majumder。通过区间分析实现的模糊均值 – 方差 – 倾斜组合选择模型。计算机与应用数学。61(1),126-137,2011 [ELSEVIER 出版物]。[影响因子:3.476]
尽管深度神经网络推动了视觉识别任务的进步,但最近的证据表明,这些模型校准不佳,导致预测过于自信。在训练期间最小化交叉熵损失的标准做法促使预测的 softmax 概率与独热标签分配相匹配。然而,这会产生正确类别的预 softmax 激活,该激活明显大于其余激活,从而加剧了校准错误问题。最近从分类文献中观察到,嵌入隐式或显式最大化预测熵的损失函数可产生最先进的校准性能。尽管有这些发现,但这些损失在校准医学图像分割网络的相关任务中的影响仍未得到探索。在这项工作中,我们提供了当前最先进的校准损失的统一约束优化视角。具体来说,这些损失可以看作是线性惩罚(或拉格朗日项)的近似值,对 logit 距离施加了等式约束。这指出了这种底层等式约束的一个重要限制,其随后的梯度不断推向无信息解决方案,这可能会阻止在基于梯度的优化过程中在判别性能和模型校准之间达到最佳折衷。根据我们的观察,我们提出了一种基于不等式约束的简单而灵活的泛化方法,它对 logit 距离施加了一个可控的边际。在各种公共医学图像分割基准上进行的全面实验表明,我们的方法在网络校准方面为这些任务设定了新的最先进的结果,同时判别性能也得到了改善。代码可在 https://github.com/Bala93/MarginLoss 获得
摘要 — 过去几年,随着量子计算硬件的快速发展,人们开发了多种量子软件堆栈 (QSS)。QSS 包括量子编程语言、优化编译器(将用高级语言编写的量子算法转换为量子门指令)、量子模拟器(在传统设备上模拟这些指令)以及软件控制器(将模拟信号发送到基于量子电路的非常昂贵的量子硬件)。与传统的编译器和架构模拟器相比,由于结果的概率性质、缺乏明确的硬件规格以及量子编程的复杂性,QSS 难以测试。这项工作设计了一种新颖的 QSS 差分测试方法,称为 QD IFF,具有三大创新:(1) 我们通过保留语义的源到源转换生成要测试的输入程序以探索程序变体。 (2) 我们通过分析电路深度、2 门操作、门错误率和 T1 弛豫时间等静态特性,过滤掉不值得在量子硬件上执行的量子电路,从而加快差分测试速度。(3)我们通过分布比较函数(如 Kolmogorov-Smirnov 检验和交叉熵)设计了一种可扩展的等效性检查机制。我们使用三个广泛使用的开源 QSS 评估 QD IFF:IBM 的 Qiskit、Google 的 Cirq 和 Rigetti 的 Pyquil。通过在真实硬件和量子模拟器上运行 QD IFF,我们发现了几个关键的错误,揭示了这些平台中潜在的不稳定性。QD IFF 的源变换可有效生成语义等价但不相同的电路(即 34% 的试验),其过滤机制可将差分测试速度提高 66%。
摘要 — 本文介绍了 B RAIN F USE N ET,一种基于脑电图 (EEG) 与光电容积描记法 (PPG) 和加速度计 (ACC) 信号的传感器融合的新型轻量级癫痫检测网络,适用于低通道数可穿戴系统。B RAIN F USE N ET 利用灵敏度-特异性加权交叉熵 (SSWCE),这是一种结合了灵敏度和特异性的创新损失函数,可解决严重不平衡数据集的挑战。对于仅使用四个通道的基于 EEG 的分类,B RAIN F USE N ET - SSWCE 方法成功检测到 CHB-MIT 数据集上 93.5% 的癫痫发作事件(基于样本的灵敏度为 76.34%)。在 PEDESITE 数据集上,仅考虑 EEG 数据时,我们分别表现出基于样本的灵敏度和假阳性率 60.66% 和 1.18 FP/h。此外,我们证明,整合 PPG 信号可将灵敏度提高到 61.22%(成功检测到 92% 的癫痫发作事件),同时将假阳性数量降低到 1.0 FP/h。最后,当还考虑 ACC 数据时,对于基于样本的估计,灵敏度增加到 64.28%(成功检测到 95% 的癫痫发作事件),假阳性数量下降到仅 0.21 FP/h,而当考虑基于事件的估计时,每天的误报少于一次。BRAIN FUSE N ET 资源友好,非常适合在低功耗嵌入式平台上实施,我们
随机量子电路和随机电路采样 (RCS) 最近引起了量子信息界所有子领域的极大关注,尤其是在谷歌于 2019 年宣布量子霸权之后。虽然 RCS 科学吸收了从纯数学到电子工程等不同学科的思想,但本论文从理论计算机科学的角度探讨了这一主题。我们首先对随机量子电路的 t 设计和反集中特性进行严格处理,以便各种中间引理将在后续讨论中找到进一步的应用。具体而言,我们证明了形式为 EV ⟨ 0 n | V σ p V † | 0 n ⟩ 2 的表达式的新上限,其中 1D 随机量子电路 V 和 n 量子比特泡利算子 σ p 。接下来,我们将从高层次讨论 RCS 至上猜想,该猜想构成了复杂性理论的主要基础,支持了以下观点:深度随机量子电路可能与任意量子电路一样难以进行经典模拟。最后,我们研究了量子和经典欺骗算法在线性交叉熵基准 (XEB) 上的性能,这是 Google 为验证 RCS 实验而提出的统计测试。我们考虑了 Barak、Chou 和 Gao 最近提出的经典算法的扩展,并尝试证明扩展算法可以获得更高的 XEB 分数 [BCG20]。虽然我们无法证明具有 Haar 随机 2 量子比特门的随机量子电路的关键猜想,但我们确实在其他相关设置中建立了结果,包括 Haar 随机幺正、随机 Cliūford 电路和随机费米子高斯幺正。
S. No.主题 1 人工智能 (AI) 简介:人工智能的简介、发展和历史、各种应用领域(医疗保健、监控、分析和网络安全等。)、科学应用、机器学习 (ML) 和深度学习 (DL) 简介、AI、ML 和 DL 之间的区别、基于规则的系统、智能代理、优化问题。2 人工智能的 Python 编程:简介、数据类型、变量、运算符、输入和输出操作;环境设置、控制流 - 决策控制、循环语句等。;数据结构 - 列表、元组、字符串、字典、集合;函数式编程 - 函数类型、递归函数、Lambda 函数、模块和包; OOPs 概念、异常处理、Python 库 - numPy、matplotlib、pandas、scipy、seaborn 等。3 人工智能数学:线性代数 - 向量、标量、矩阵和矩阵运算;概率 - 基础、抽样、条件概率、相关和独立事件;统计学基础 - 集中趋势和方差的测量、概率分布(正态、二项式、泊松)、抽样理论、相关性、回归、异常值 4 数据准备和可视化:数据准备、数据预处理、特征工程 - 特征选择技术、特征优化、降维(主成分分析)、数据清理和转换、数据验证和建模;数据可视化 – 使用 Python 库的各种数据图(箱线图、散点图、2D 和 3D 图、时间序列图、直方图等)5 机器学习:机器学习基础、类型 – 监督、无监督和强化学习、机器学习的应用;分类算法 – 线性和逻辑回归(梯度下降、损失函数、交叉熵)、支持向量机、朴素贝叶斯分类器、决策树、随机森林;聚类算法 – k 均值、模型评估 – 欠拟合与过拟合、混淆矩阵、ROC、精度、召回率、F1、F2、偏差和方差。6 深度学习:简介、历史、生物神经元基础知识、多层感知器 (MLP)、反向传播、人工神经网络 - 卷积神经网络 (CNN)、RNN、LSTM、使用 Tensorflow 的 Keras 神经网络模型、迁移学习。6 人工智能的应用:文本分析 - 概述、文本处理(语法、解析和词干提取)、语义和句法分析、信息检索、图像/视频处理 - 人脸识别、对象分类。聊天机器人的实现。7 项目工作