但当错误决策的潜在后果很严重时,就需要更强的态势感知能力。在这种情况下,人类可以充当哨兵,依靠他们的经验来管理风险情况。虽然算法可能擅长识别定义不明确的过程,但也可能需要有经验的人来训练人工智能系统,担任教练的角色。在复杂程度和风险程度很高的情况下,人机交互的需求将达到顶峰,成为一种相互学习的关系。在这种情况下,人类专家是长期、点对点关系中的同伴。
随着基于人工智能 (AI) 的产品和服务在各个行业中激增,一个最重要的问题浮出水面:这些系统应该包括人类还是应该自主运行?这个问题是我们现在认为理所当然的许多服务和产品的基础。例如,考虑使用谷歌地图。我们中的许多人现在都认为这种基于人工智能的服务是理所当然的,当它指引我们从一个地方到另一个地方时,我们几乎不用考虑它会带我们去哪里。这个工具背后没有人类向导或主持人;我们甚至不能像在银行那样打电话,要求找人谈谈走错路或被带到了目的地以外的地方。如果出了问题,没有人可以帮助我们,也没有人可以投诉。
每篇论文的演讲时间不应超过 30 分钟,这样我们才能有足够的时间进行讨论。演讲应侧重于阐述论文的动机、相关工作、工具/研究设计、研究问题、发现、局限性和未来工作。为了使您的演讲更具洞察力,请尝试以文献为中心,并告诉观众为什么首先提出这项工作,它如何增进人们对某个主题的理解,以及它与过去其他相关工作有何不同。我们还鼓励您将指定论文与您自己的研究联系起来。您应该准备一组问题(您可以自己提出问题,也可以基于其他学生在 Piazza 上发布的问题),并在演讲后与讲师一起根据这些问题共同主持课堂讨论。
随着机器学习方法越来越多地用于增强人类决策能力,可解释人工智能 (XAI) 研究探索了将系统行为传达给人类的方法。然而,这些方法往往无法解释人类在与解释互动时的情感反应。面部情感分析研究人类面部的情绪表达,是了解用户如何参与解释的一个有前途的视角。因此,在这项工作中,我们的目标是 (1) 确定人们与 XAI 界面交互时哪些面部情感特征会很明显,以及 (2) 开发一个多任务特征嵌入,将面部情感信号与参与者对解释的使用联系起来。我们的分析和结果表明,当参与者未能有效地使用解释时,面部 AU1 和 AU4 以及唤醒的发生和值会增加。这表明面部情感分析应该纳入 XAI,以根据个人的互动风格个性化解释,并根据执行任务的难度调整解释。
摘要。尽管即使是非常先进的人工系统也无法满足人类成为社会互动适当参与者所需的苛刻条件,但我们认为并非所有人机交互 (HMI) 都可以适当地简化为单纯的工具使用。通过批评标准意向性主体解释的过于苛刻的条件,我们建议采用一种最小方法,将最小主体归因于某些人工系统,从而提出将采取最小联合行动作为社会 HMI 的案例。在分析此类 HMI 时,我们利用了丹尼特的立场认识论,并认为出于多种原因,采取意向性立场或设计立场可能会产生误导,因此我们建议引入一种能够捕捉社会 HMI 的新立场——人工智能立场。
● 需要在必须保护的生态环境中优化可可种植。据(Bessombes 2015)称,秘鲁是世界第二大可可出口国。
当算法和人类都无法在给定上下文中的所有实例中发挥主导作用时,人机互补性就很重要。最近探索人机协作的研究考虑了与分类任务相对应的决策。然而,在许多人类可以从人工智能互补性中受益的重要情况下,人类会采取行动。在本文中,我们提出了一种新颖的人机协作框架,用于选择有利的行动方案,我们将其称为人机团队的学习互补政策 (LCP - HAI)。我们的解决方案旨在利用人机互补性来最大化决策奖励,通过学习旨在补充人类的算法策略,通过使用路由模型将决策推迟给人类或人工智能以利用由此产生的互补性。然后,我们扩展了我们的方法来利用机会并降低实践中重要情况下出现的风险:1)当一个团队由多个具有差异和潜在互补能力的人组成时,2)当观察数据包括一致的确定性动作时,3)当未来决策的协变量分布与历史数据不同时。我们使用真实人类反应和半合成数据证明了我们提出的方法的有效性,并发现我们的方法在各种设置下都提供了可靠且有利的性能,并且优于算法或人工智能自己做出决策时。我们还发现,我们提出的扩展有效地提高了人机协作性能在不同挑战性设置下的稳健性。
摘要 - 在过去的十年中,使用自动无人机系统进行测量,搜救或最后一英里的交付呈指数增长。随着这些应用的兴起,需要在复杂和不确定的环境中运行无人机的高度稳健,关键算法。此外,快速快速使无人机能够覆盖更多的地面,提高生产率并进一步增强其用例。一个用于开发高速导航中使用的算法的代理是自动无人机赛车的任务,研究人员将无人机计划无人机通过一系列大门,并尽快避免使用板载传感器和有限的计算能力。速度和加速度分别超过80 kph和4 g,在整个感知,计划,控制和国家估计中提出了重大挑战。为了达到最高性能,系统需要实时算法,这些算法对运动模糊,高动态范围,模型不确定性,空气动力学干扰以及通常无法预测的对手。该调查涵盖了自主无人机在基于模型和基于学习的方法中竞争的进展。我们提供了多年来的领域,其发展的概述,并以将来面临的最大挑战和开放性问题得出结论。
无人驾驶汽车(UAV)技术的成熟和可伸缩性为彻底彻底迅速交付提供了变化的机会。本研究探讨了将无人机与公共交通工具(PTV)整合在一起,以建立一种新颖的交付范式,从而增强了公共交通运营商的收入,并提高了运输系统的效率,而不会损害乘客的便利或运营效率。采用六边形规划技术,本研究确定并量化了PTV的可用时空资源以进行无人机集成。这涉及将迅速交付订单的时空动态与PTV乘客的临时动态保持一致,该动态基于北京海德地区的现场数据。利用这些输出,我们定量分析将无人机与PTV集成在增加公共交通收入以及减少碳排放和缓解拥塞的潜力的好处。此外,我们通过预测未来的交付需求增加来量化UAV-PTV集成的长期收益。基于获得的定量结果,本研究讨论了实用和政策的影响,以支持无人机与PTV的可持续融合。
这些测试证明了操作员能够从很远距离的直升机上控制一架或多架无人机。此次飞行演示于 2024 年 10 月 9 日在欧盟委员会代表的出席下进行,可以测试不断提高的互操作性水平,直至距离 1,000 公里的另一个国家的直升机控制一个国家的无人机及其观察系统。
