聚合物通过原子上薄的前体膜进行高表面能的湿纳米孔,然后毛细血管填充较慢。我们在这里使用基于膜的芯片介绍了光干扰光谱,该芯片使我们能够观察到这些现象的原位动力学,以至于以毫秒为单位的时间分辨率,以至于亚纳米计尺度。该设备由带有积分光子晶体的介孔硅膜(平均孔径6 nm)组成,该薄膜允许同时测量薄膜干扰的相位移位以及在吸收时光子晶体的共振。对于苯乙烯二聚体,我们找到了一个没有前体膜的扁平液体,而五聚体则形成了在毛细管填充的半月板前移动的扩展的分子薄膜。与五聚体的吸入动力学相比,这些不同的行为归因于孔隙表面扩散的速度明显更快,反之亦然。此外,两种低聚物都表现出异常的缓慢吸收动力学,这可以分别通过散装值的明显粘度和11倍来解释。然而,通过一个收缩模型来实现对动力学的更一致的描述,该模型强调了孔半径中局部起伏的重要性,其分子尺寸的重要性不断增加,并且包括孔隙壁上的亚纳米水动力死亡,固定区,但否则使用散装流体参数。总体而言,我们的研究表明,使用介孔培养基的干涉,光富集实验可以对聚合物液体的纳米 - 雷学进行详细的探索。
一所化学与化学工程学院,武汉纺织大学,江克萨斯阳光大道1号,武汉430200,中国B河北纤维纤维和生态型纤维及生态型和生态实验室,武汉大学,武汉大学,乌汉尼大学1号,韦恩·阿维(Wuhan Aveny),韦恩(Jiangxia Dong Chuan Road No. 800, Shanghai 200240, China d School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore e Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 138602 Singapore f Energy Research Institute@NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological大学,639798新加坡一所化学与化学工程学院,武汉纺织大学,江克萨斯阳光大道1号,武汉430200,中国B河北纤维纤维和生态型纤维及生态型和生态实验室,武汉大学,武汉大学,乌汉尼大学1号,韦恩·阿维(Wuhan Aveny),韦恩(Jiangxia Dong Chuan Road No.800, Shanghai 200240, China d School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore e Singapore-HUJ Alliance for Research and Enterprise, NEW-CREATE Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 138602 Singapore f Energy Research Institute@NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological大学,639798新加坡
摘要:数十年来,肿瘤疗法的问题吸引了许多研究人员的注意。开发新剂型以提高肿瘤学治疗功效并最小化副作用的有希望的策略之一是开发基于纳米颗粒的抗癌药物的靶向运输系统。在无机纳米颗粒中,介孔二氧化硅值得特别关注,因为其出色的表面特性和药物负载能力。本综述分析了影响介孔二氧化硅纳米颗粒(MSN)的细胞毒性,细胞摄取和生物相容性的各种因素,这构成了安全有效的药物输送系统发展的关键方面。对化学修饰MSN的技术方法特别注意以改变其表面特性。还讨论了调节药物从纳米颗粒中释放的刺激,有助于对体内递送过程的有效控制。这些发现强调了通过不同表面函数组,可识别的分子和聚合物在抗癌药物递送系统中的潜在使用的重要性。
多孔碳是超级电容器的重要电极材料。超级电容器面临的挑战之一是在不依赖伪电容的情况下提高其能量密度,伪电容基于快速氧化还原反应,而这往往会缩短器件寿命。一种可能的解决方案是在由最少堆叠的石墨烯壁组成的高表面碳材料中实现高总电容(C tot),其中包括亥姆霍兹电容(CH)和可能的量子电容(CQ)。在本文中,采用模板法合成具有大致相同孔结构(≈2100m2g-1,平均孔径≈7nm)但含氧官能团(0.3–6.7 wt.%)和氮掺杂剂(0.1–4.5 wt.%)浓度不同的3D介孔石墨烯。因此,系统地研究了杂原子官能团对有机电解质中C tot的影响,不包括孔结构的影响。结果表明,杂原子官能基决定 C tot ,导致循环伏安曲线呈矩形或蝴蝶形。氮官能基由于 CQ 增加而显著增强 C tot 。
抽象的介孔二氧化硅是一种出色的低密度透明材料,其特征在于定义明确的纳米孔径。它有各种形态,包括整体,纳米颗粒和电影。该材料在众多技术应用中起着关键作用,无论是独立的还是混合复合材料的组成部分,是多种无机和有机材料范围的宿主。在合成路线中,我们考虑了Sol -Gel方法,因为它在产生纳米颗粒和散装中孔二氧化硅方面取得了巨大成功。本评论的重点是探索介孔二氧化硅和介孔二氧化硅的复合材料的光学性质,并深入研究如何在各个领域中利用中孔二氧化硅内的巨大空间:热和电气绝缘,光子学,环境设备,或用于药物和生物模拟的纳米型。这项全面的检查强调了介孔二氧化硅的多方面潜力,将其定位为在各个科学领域开发创新解决方案的关键参与者。
摘要:本研究提出了将介孔碳和介孔聚合物材料与延长的多孔介质结构一起作为阳离子染料分子的吸附剂的结果。两种类型的吸附剂都是合成材料。提出的研究的目的是对获得的介孔吸附剂的制备,表征和利用。使用低温氮吸附等温线,X射线衍射(XRD),小角度X射线散射(SAXS)和电位测量测量测量测量值,使用低温氮吸附等温线,X射线衍射(XRD)确定了所获得材料的物理特性,形态和多孔结构特征。使用扫描电子显微镜(SEM)成像形态和显微结构。使用X射线光电学光谱(XPS)进行了有关表面活性基团,元素组成和元素的电子状态的信息的表面化学特性,该化学特征提供了有关表面活性基团,元素组成和元素的电子状态。使用三种选定的阳离子染料(甲苯蓝色)和三甲烷(玛雀绿色和晶体紫)的平衡和动力学吸附实验确定介孔材料的吸附特性。分析了使用材料的纳米结构和表面特性的吸附能力。将广义的langmuir方程应用于吸附等温度数据的分析。染料吸附的动力学与吸附剂的结构特性密切相关。吸附研究表明,与聚合物材料相比,碳材料具有更高的吸附能力,例如0.88–1.01 mmol/g和0.33–0.44 mmol/g,与聚合物材料相比,碳材料的吸附能力较高(0.038-0.0.044 mmol/g和0.044 mmol/g和0.038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038-038- –0-038- – 0。使用各种方程式分析动力学数据:一阶(敌人),二阶(SOE),混合1,2-阶(MOE),多指数(M-Exp)和分形类MOE(F-MOE)(F-MOE)。
摘要:本文旨在研发一种载阿司匹林双修饰纳米递送系统用于治疗肝细胞癌。本文采用“一锅两相成层法”制备介孔二氧化硅纳米粒子(MSN),以多巴胺自聚合形成聚多巴胺(PDA)作为pH敏感涂层。通过Michael加成反应将半乳糖胺(Gal)和活性靶向半乳糖胺(Gal)连接到PDA包覆的MSN上,合成半乳糖胺修饰的PDA修饰纳米粒子(Gal-PDA-MSN)。对所制备的纳米粒子的尺寸、粒径分布、表面形貌、BET比表面积、介孔尺寸和孔体积进行了表征,并研究了其体外载药量和药物释放行为。Gal-PDA-MSN具有pH敏感和靶向性。 MSN@Asp与PDA-MSN@Asp、Gal-PDA-MSN@Asp的释放曲线不同,PDA-MSN@Asp、Gal-PDA-MSN@Asp的药物释放随酸度增加而加快。体外实验表明,三种纳米药物对人肝癌HepG2细胞的毒性和抑制效果均高于游离Asp。该药物递送系统有利于控制释放和靶向治疗。
摘要 纳米技术是一种发展迅速且前景广阔的方法,在生物医学和药物治疗应用中引起了广泛关注。在纳米结构材料中,介孔二氧化硅纳米粒子 (MSN) 被有效用作药物输送系统的纳米载体。MSN 可以通过不同的合成技术进行量身设计。它们的形态特征决定了此类材料的应用类型。最近,聚合物基材料已用于对 MSN 表面进行功能化。这些经过修饰的纳米载体装载有药物,并且在暴露于内源性或外源性刺激时可以卸载其“货物”。在本研究中,讨论了不同的靶向概念,包括被动、主动、血管、核和多级靶向。
谷物宽度和重量2(GW2)是一种E3-泛素连接酶编码基因,对谷物物种中谷物的大小和重量负调节。因此,建议禁用GW2基因活性以提高作物生产率。我们在这里表明,大麦GW2.1同源物的CRISPR/CAS介导的诱变会导致细长谷物的发展和蛋白质含量增加。同时,GW2.1功能的损失引起了由于尖峰数量减少和谷物设置低而引起的明显晶粒屈服不足。我们还表明,GW2.1缺乏作物产量和蛋白质含量引起的相反作用在很大程度上与培养条件无关。这些发现表明大麦GW2.1基因对于产量和晶粒性状之间的优化是必需的。总的来说,我们的数据表明,大麦中GW2.1基因活性的丧失与多效性效应相关,对生成器官的发展以及因此谷物产生产生了负面影响。我们的发现有助于更好地理解谷物的发育以及GW2.1控制大麦的定量和定性遗传改善中控制的UTI。
异丙嗪(PHZ)被用作兽医中的镇静剂,其残留物可能威胁到人类的健康。PHz的电化学检测是适合在该领域应用的方法。然而,由于基质干扰,传统的电分析很难直接在肉样品中进行。这项工作将磁性固相提取和差异脉冲伏安法整合,以高度敏感和选择性地确定牛肉和牛肉肝脏中的PHZ。COFE 2 O 4 /用C 18功能化的介孔二氧化硅(mg@msio 2 -c 18)涂有含量的石墨烯,合成为分散的磁吸附剂以提取Phz。用氮掺杂的空心碳微球(HCM)修饰的磁性玻璃碳电极通过PHz吸引Mg@MSIO 2 -C 18,并直接检测PHZ而无需洗脱程序。mg@MSIO 2 -C 18可以分离PHz,以避免杂质在引起检测时的干扰,并在磁电上集中PHZ。此外,使用HCM的电极修饰可以扩增PHz的电化学信号。最后,集成的PHZ测定方法表现出较宽的线性范围从0.08μmol/L到300μmol/L,检测到9.8 nmol/l的低极限。牛肉样品分析提供了出色的恢复,这表明该方案有望在真实肉类样本中快速和现场检测PHZ©2023©2023由Elsevier B.V.代表中国化学学会和中国医学学院的Materia Medica Institute,中国医学科学院出版。