隐蔽言语,也称为想象言语,是在不移动发声器官或产生任何声音输出的情况下在内部发音音素、单词或句子 [1]。尽管失语症或闭锁综合症等言语相关障碍通常会限制明显的言语产生,但即使在这些情况下,也有可能主动想象说话 [2]。脑机接口 (BCI) 将大脑活动解读为数字形式,作为计算机命令,让用户通过脑信号控制外部设备 [3]。BCI 系统如果能够解码隐蔽言语过程中的脑电活动并将其转化为文字,将改善残疾人的生活质量 [2]。在目前可用于 BCI 系统的神经成像技术中,脑电图 (EEG) 具有经济高效、非侵入性的优势,时间分辨率高达不到 1 毫秒。然而,此类系统也存在一些挑战,包括信噪比低、空间分辨率低以及由于眨眼或肌肉活动而频繁出现伪影 [2]、[3]。此外,尽管已知大脑的某些区域专门用于语音感知和产生,但语音相关任务的空间特征在受试者之间和受试者内部存在相关的差异 [4],这使得寻找一个能够提供可靠解码的模型即使对单个人来说也是一项挑战,即使对单个人来说,也需要几天的时间。
抽象的沉浸式虚拟现实(VR)实现了自然主义的神经科学研究,同时进行了实验控制,但动态和互动刺激构成了方法论挑战。我们在这里探索了情绪唤醒,情感经验的基本特性和自然主义刺激下的枕骨 - 枕α功率之间的联系:37名年轻健康的成年人完成了沉浸式的VR体验,其中包括越过的越野车,并记录了他们的EEG,而他们的EEG被记录。然后,他们在观看经验重播的同时,不断地评估自己的主观情感唤醒。通过(1)分解连续的脑电图信号,同时通过(1)分解α功率和唤醒等级之间的启动,并通过(2)解码高唤醒和低唤醒时期的高唤醒时期,通过(1)分解连续的EEG信号,通过(1)分解连续的EEG信号,通过(1)分解连续的EEG信号,通过(1)分解连续的EEG信号,通过(1)分解连续的EEG信号,以高和低唤醒的方式通过(2)使用区分的常见的短暂的空间记忆和长期的长期恢复性的Neural Neural re recrillent neural recor re recor remanter,对情绪唤醒和parieto-cipipital Alpha功率之间的关联进行了测试和确认。我们成功地结合了脑电图和自然主义的身临其境的VR经验,以扩展有关情绪唤醒神经生理学的先前发现,对现实世界的神经科学。
摘要 — 无声语音期间产生的脑信号已被证明可用于设计基于通信的脑机接口 (BCI)。然而,脑信号本质上是非平稳和复杂的,因此很难识别。我们提出了一个使用通过脑电图 (EEG) 传感器捕获的脑信号识别想象单词的框架。我们的方法包括两个主要部分:(i) 电极选择方法和 (ii) 卷积注意网络。电极选择方法为想象语音识别提供包含最具辨别力的时频信息的电极。此外,来自选定电极的声谱图被用作卷积注意网络的输入,该网络提取时频特征并通过将更高重要性归因于具有更高辨别能力的时间点来执行分类。使用 EEG 数据集的实验结果表明,所提出的方法能够有效识别心里说出的单词,并且性能优于最先进的方法。索引词 —EEG、脑机接口、卷积网络、注意力、内在语言、无声语言、电极选择、时频
人识别技术通过利用其独特的,可测量的生理和行为特征来认可个人。然而,最先进的人识别系统已被证明是脆弱的,例如,反监视的假体口罩可以阻止脸部识别,隐形眼镜可以欺骗虹膜识别,Vocoder可以损害语音识别,而指纹膜可以欺骗指纹传感器。EEG(脑电图)基于识别,它利用用户的脑电波信号进行识别并提供了更具弹性的解决方案,最近引起了很多关注。但是,准确性仍然需要提高,很少的工作集中在识别系统的鲁棒性和适应性上。我们提出了一种基于脑电图的生物特征识别方法Mindid,可实现更高的准确性和更好的特征。首先,分析了脑电图数据模式,结果表明,增量模式包含用于用户识别的最独特信息。然后,分解的三角形模式被送入基于注意力的编码器decoder rnns(反复的神经网络)结构,该结构根据通道的重要性将注意力重量不同于不同的EEG通道。从基于注意的RNN中学到的判别表示形式用于通过增强分类器来识别用户的标识。在3个数据集(两个本地和一个公众)上评估了建议的方法。另一个本地数据集(EID-S)和公共数据集(EEG-S)分别用于演示鲁棒性和适应性。一个本地数据集(EID-M)用于性能评估,结果表明,我们的模型达到了0.982的准确性,该准确性优于基准和最先进的方法。结果表明,所提出的方法有可能在实践环境中大部分部署。
摘要:已提出了与错误相关的电位(ERRP)作为改善大脑 - 计算机界面(BCI)性能的一种手段,方法是纠正BCI执行的不正确操作或标记数据以连续适应BCI以改善性能。后一种方法可能在中风康复中相关,在这种康复中,通过使用在整个康复过程中持续个性化的广义分类器,可以将BCI校准时间最小化。如果数据正确标记,则可以实现这一目标。因此,这项研究的目的是:(1)对中风的个体产生的单次试验错误,(2)调查测试 - 重测可靠性,(3)比较不同的分类校准方案与不同的分类方法与人工新神经网络(ANN,ANN,ANN,和LINARINAL ANTIFERINAL,LDA)的不同分类方法(人工Neuratial网络)和LDA的含义。25个中风的人在两天的时间里试图执行运动,然后在记录连续脑电图时收到反馈(错误/正确)。脑电图分为时期:errps和nonerrps。根据时间特征或整个时期,将时期与多层感知器ANN分类。此外,将特征与收缩LDA分类。特征是来自感觉运动皮层的ERR和非ERRPS的波形,以改善分类器输出的解释性和解释。测试了三个校准方案:今天,日间和跨参与者。使用日期校准,将90%的数据与整个时期正确分类为ANN的输入;当使用时间特征作为ANN和LDA的输入时,它降至86%和69%。两天之间的测试可靠性较差,而其他校准方案导致准确性在63-72%的范围内,LDA表现最好。个人的损伤水平与分类精度之间没有关联。结果表明,可以在中风的个体中对错误进行分类,但是使用这种方法最佳解码需要使用用户和会话特定的校准。使用ERRP/NONERRP波形特征使对分类器输出的生理有意义解释成为可能。结果可能对在BCI中连续将数据进行标记以进行中风康复,从而有可能改善BCI性能。
摘要:运动图像(MI)促进运动学习,并鼓励大脑 - 计算机接口系统,这些系统需要进行脑电图(EEG)解码。但是,需要长时间的培训来掌握脑部节奏的自我调节,从而导致使用MI不确定的用户。我们介绍了一种基于参数的跨受试者转移学习方法,以改善基于MI的BCI系统中表现不佳的个体的性能,通过内核 - 汇总标记的EEG测量结果和心理问卷来汇总数据。为此,实施了用于MI分类的深层神经网络,以从源域预先培训网络。然后,将参数层转移,以在细胞调整过程中初始化目标网络,以重新计算基于多层感知的精度。要执行将分类特征与实价功能相结合的数据融合,我们通过高斯 - 插入实现了逐步的内核匹配。最后,根据受试者考虑其对BCI运动技能的影响,探索表现最出色的受试者(源空间)的两个选择策略,选择了对基于差异的集群的配对源 - 目标集来进行评估目的:单个受试者:单件受试者和多个受试者。针对判别MI任务获得的验证结果表明,即使包含问卷数据,引入的深层神经网络也具有准确性的竞争性能。
解码一个人通过脑电图(EEG)从人脑聆听的语音信号可以帮助我们忽略听觉系统的工作原理。线性模型已用于从语音中重建脑电图,反之亦然。最近,人工神经网络(ANN),例如,综合神经网络(CNN)和基于长期的短期记忆(LSTM)架构在建模脑电图与语音之间的关系方面的线性模型优于线性模型。在诱惑将这些模型在实际应用中使用这些模型之前,例如听力测试或(第二)语言理解评估,我们需要知道这些模型正在介绍哪种语音信息。在这项研究中,我们旨在使用不同级别的语音特征分析基于LSTM的模型的性能。该模型的任务是确定两个给定的语音段中的哪个与记录的脑电图匹配。我们使用了低级和高级语音特征,包括:信封,MEL频谱,语音活动,音素标识和词嵌入。我们的结果表明,该模型可阐述有关脑电图中有关沉默,强度和广泛语音类别的信息。此外,包含所有这些信息的MEL频谱图在所有特征中都具有最高的精度(84%)。索引术语:LSTM,CNN,语音解码,听觉系统,EEG
情绪已与自主神经(ANS)和中枢神经系统的活动联系起来(CNS; Dalgleish,2004)。因此,很难将个人(即离散)情绪类别与ANS中的特定响应模式联系起来(参见Kragel&Labar,2013年; Kreibig,2010年; Siegel等人,2018年)或不同的大脑区域(Lindquist等,2012;但是参见Saarimäki等,2016)。相反,情绪似乎是通过与基本心理学(即,也是非情感)操作有关的大脑区域和身体激活的一组动态实现的(即“心理原始人”; Lindquist等,2012)。在这种观点中,Humans通常处于令人愉悦或不愉快的唤醒状态的波动状态(“核心影响”; Russell&Feldman Barrett,1999; Lindquist,2013),可能会受到外部刺激的影响。表情唤醒可能会有一种“共同货币”来比较不同的刺激或事件(Lindquist,2013年),并代表基本的神经过程,这些神经过程是各种表情的基础(Wilson-Mendenhall等,2013)。
情绪已与自主神经(ANS)和中枢神经系统的活动联系起来(CNS; Dalgleish,2004)。因此,很难将个人(即离散)情绪类别与ANS中的特定响应模式联系起来(参见Kragel&Labar,2013年; Kreibig,2010年; Siegel等人,2018年)或不同的大脑区域(Lindquist等,2012;但是参见Saarimäki等,2016)。相反,情绪似乎是通过与基本心理学(即,也是非情感)操作有关的大脑区域和身体激活的一组动态实现的(即“心理原始人”; Lindquist等,2012)。在这种观点中,Humans通常处于令人愉悦或不愉快的唤醒状态的波动状态(“核心影响”; Russell&Feldman Barrett,1999; Lindquist,2013),可能会受到外部刺激的影响。表情唤醒可能会有一种“共同货币”来比较不同的刺激或事件(Lindquist,2013年),并代表基本的神经过程,这些神经过程是各种表情的基础(Wilson-Mendenhall等,2013)。
科学界正在探索脑电图 (EEG) 与个人信息之间的关联。尽管使用 EEG 进行身份识别对研究人员来说很有吸引力,但是感知的复杂性限制了此类技术在实际应用中的使用。在这项研究中,通过降低脑信号采集和分析过程的复杂性解决了这一难题。这是通过减少电极数量来实现的,在不影响准确性的情况下简化了关键任务。事件相关电位 (ERP),又称时间锁定刺激,用于从每个受试者的头部收集数据。在放松一段时间后,向每个受试者直观地呈现一个随机的四位数字,然后要求他们思考 10 秒。对每个受试者进行了 15 次试验,在每个心理回忆片段之前都有放松和视觉刺激阶段。我们引入了一个新颖的派生特征,称为半球间振幅比 (IHAR),它表示横向对应电极对的振幅比。该特征是在使用信号增强技术扩展训练集后提取的,并使用多种机器学习 (ML) 算法进行测试,包括线性判别分析 (LDA)、支持向量机 (SVM) 和 k-最近邻 (kNN)。大多数 ML 算法在 14 个电极的情况下显示 100% 的准确率,根据我们的结果,使用更少的电极也可以实现完美的准确率。然而,AF3、AF4、F7 和 F8 电极组合与 kNN 分类器产生了 99.0 ± 0.8% 的测试准确率,是人员识别的最佳选择,既保持了用户友好性又保持了性能。令人惊讶的是,放松阶段表现出三个阶段中最高的准确率。