自从R Forman [15]的离散莫尔斯理论(DMT)的发展以来,离散梯度领域(DGF)的概念在数学和科学的各个领域都发挥了重要作用。这个想法是作为差异拓扑中平滑梯度领域概念的组合类似物而出现的,事实证明,它与平滑的前身一样重要。特别是,在计算拓扑技术相对较新的增长中,DGF已成为主要工具之一。例如,Bauer,Lange和Wardetzky [6]以及Harker,Harker,Mischaikow,Mrozek和Nanda [22]以及在Lewiner,Lopes,Lopes和Tavavares和TavavareS和TavavareS [26]中,Forman的DMT已成功地用于处理减少降噪问题,以及Harker,Mischaikow,Mrozek和Nanda [22]的拓扑数据分析。dmt还看到了在纯粹的理论领域中的重要应用,例如,在建立最小的蜂窝结构中,具有同质性的超平面布置的辅助类型,更通常是不同种类的配置空间;参见Farley [10],Mori和Salvetti [28],Salvetti和Settepanella [32]以及Severs and White [33]。dgf也已用于确定两个连接图的复合物的显式同源碱基,这些对象在Vassiliev对标准3 – Sphere中的结中的研究中起着相关作用;参见Shareshian [34]和Vassiliev [35; 36; 37]。
量化riemann表面S的Teichmüller空间的量化是3维量子重力的一种方法,并且是群集品种的原型典范。s中的任何简单循环都会产生自然的单片函数i。/在Teichmüller空间上。对于S的任何理想三角剖分,此功能i。/是在弧形的凸起的剪切坐标的平方根中的lurent多项式。一个重要的问题是构建此功能的量化i。/,即用量子变量中的非共同劳伦多项式代替它。这个问题与物理学中的框架受保护的旋转特征密切相关,已通过Allegretti和Kim使用Bonahon和Wong的SKEIN代数SL 2量子痕迹解决,以及使用Gaiotto,Moore和Neitzke的Seiberg的Seiberg -Witter -Witter -Witter -Witten Curves,Spectral网络,光谱网络以及Writhes of Writhes的Gaiotto,Moore和Neitzke的Gaiotto。我们表明,量化问题的这两种解决方案一致。我们增强了Gabella的解决方案,并表明它是Bonahon -Wong量子痕迹的扭曲。
在 [7] 中,作者提出了两种数字签名方案,他们声称这些方案是量子安全的,即可抵抗量子算法的攻击。这里我们表明,事实上,存在一个多项式时间量子算法(用于解决隐藏子群问题),允许人们在任一方案中伪造数字签名。请注意,[2] 中提供了一种用于解决任何阿贝尔(=交换)群中隐藏子群问题的多项式时间量子算法(另见 [12])。此外,我们确定所提出的方案通常甚至容易受到不使用量子算法的攻击。包括 [5] 和 [6] 在内的几个其他类似的数字签名方案也可以使用相同的方法进行攻击。我们还注意到,在 [8] 中,作者提出了一种基于类似思想的公钥建立协议。该协议在 [3] 中受到了一种与我们完全不同的方法的攻击。
本书最初是滑铁卢大学三年级本科纯数学课程 PMATH 343“量子信息数学”的课程笔记。我将把它放到网上,供任何觉得有用的人使用。有一个较长的介绍介绍了本书的内容,但是简短的版本是:这是一本本科教科书,涵盖高级线性代数(以及一些基本的矩阵分析)和量子概率(量子力学的基础数学框架),适合想要学习量子信息和量子计算的读者。本书是从“纯数学”的角度编写的:使用定理和证明来研究概念,我们尝试以独立于基础的方式进行线性代数。希望从这个描述中可以清楚地看出,这不是一本关于量子力学的书。量子概率是量子力学的数学框架,但本书是关于这个框架的数学方面,而不是关于如何实际使用该框架。此外,除了一些非常基本的内容外,本书并没有涉及太多有关信息或计算的内容。如果你主要对量子计算感兴趣,则无需从本书开始;有许多优秀的本科教科书,你只需学习线性代数入门课程即可入门。事实上,大多数从事该领域工作的人只是使用基于基础的线性代数方法。因此,从其他地方开始是完全合理的,如果你发现自己问数学问题,例如“为什么克罗内克积是这样定义的?”,请回到本书。另一方面,从一开始就知道自己想学习量子计算及其背后的所有数学知识的读者(这似乎描述了大多数在滑铁卢大学参加该课程的学生)可以从这里开始:读完本书后,你将熟练掌握量子计算中使用的数学语言,并准备好阅读其他书籍或参加其他课程。本书讨论的大多数线性代数概念在量子信息之外也得到广泛应用。对于主要对其他应用感兴趣的读者来说,量子概率是一种很好的入门方式。
2 Deuring 对应 32 2.1 三幕范畴等价 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... 50 2.4.3 非最大阶的情况 . ...
摘要。Jordan 代数自然出现在 (量子) 信息几何中,我们希望了解它们在该框架内的作用和结构。受 Kirillov 对余伴轨道辛结构的讨论的启发,我们在实 Jordan 代数的情况下提供了类似的构造。给定一个实数、有限维、形式上实数的 Jordan 代数 J ,我们利用由对偶 J ⋆ 上的 Jordan 积确定的广义分布在分布的叶子上诱导一个伪黎曼度量张量。特别是,这些叶子是李群的轨道,李群是 J 的结构群,与余伴轨道的情况类似。然而,这一次与李代数情况相反,我们证明 J ∗ 中并非所有点都位于正则 Jordan 分布的叶子上。当叶子节点包含在 J 上的正线性泛函锥中时,伪黎曼结构就变为黎曼结构,并且对于适当的 J 选择,它与有限样本空间上非正则化概率分布的 Fisher-Rao 度量相一致,或者与有限级量子系统的非正则化忠实量子态的 Bures-Helstrom 度量相一致,从而表明 Jordan 代数数学与经典和量子信息几何之间的直接联系。
本文介绍了一项研究,研究男性青少年在解决代数和几何短问题时的大脑活动(使用 ERP 方法)。研究设计将数学教育研究与神经认知研究联系起来。我们对代数和几何中数学对象从视觉到符号表示的转换相关的大脑活动进行了比较分析。研究结果表明,与执行几何任务相关的电活动比解决代数任务相关的电活动更强。此外,我们发现与代数和几何任务相关的大脑活动的头皮地形不同。基于这些结果,我们认为代数和几何问题解决与不同的大脑活动模式有关。
导数的解释,简单代数和三角函数的导数,和/差的导数,函数的乘积和商,积分:积分作为微分的逆,代数和三角函数的积分,定积分。