摘要:这项全面的评论探讨了脂肪酸(FA)代谢在心脏疾病,尤其是心力衰竭(HF)的关键作用,以及对治疗策略的影响。心脏对ATP的依赖,主要来自线粒体氧化代谢,强调了代谢柔韧性的重要性,而脂肪酸氧化(FAO)是主要来源。在HF中,FA摄取和FAO的改变发生了代谢转移,从而影响线粒体功能并导致疾病进展。 肥胖症和糖尿病等疾病也会导致代谢性疾病,导致心肌病,其标志是对粮农组织,线粒体功能障碍和脂肪毒性的过度依赖。 针对心脏病中FA代谢的治疗方法已经发展,重点是抑制或刺激粮农组织以优化心脏能量。 策略包括使用CPT1A抑制剂,使用PPARα激动剂,并增强线粒体生物发生和功能。 然而,有效性各不相同,反映了HF中代谢重塑的复杂性。 因此,考虑到心脏能量代谢复杂且受到严格调节的治疗策略。 治疗目的是优化总体代谢功能,认识到FAS的关键作用以及进一步的研究需要开发有效疗法,并采用靶向线粒体氧化代谢和改善心脏功能的有希望的新方法。在HF中,FA摄取和FAO的改变发生了代谢转移,从而影响线粒体功能并导致疾病进展。肥胖症和糖尿病等疾病也会导致代谢性疾病,导致心肌病,其标志是对粮农组织,线粒体功能障碍和脂肪毒性的过度依赖。针对心脏病中FA代谢的治疗方法已经发展,重点是抑制或刺激粮农组织以优化心脏能量。策略包括使用CPT1A抑制剂,使用PPARα激动剂,并增强线粒体生物发生和功能。然而,有效性各不相同,反映了HF中代谢重塑的复杂性。因此,考虑到心脏能量代谢复杂且受到严格调节的治疗策略。治疗目的是优化总体代谢功能,认识到FAS的关键作用以及进一步的研究需要开发有效疗法,并采用靶向线粒体氧化代谢和改善心脏功能的有希望的新方法。
目前缺乏可揭示儿童肌张力障碍不同大脑区域功能特征的影像学标记。在这项观察性研究中,我们通过揭示不同儿童肌张力障碍亚组的特定静息清醒大脑葡萄糖代谢模式,评估了 [ 18 F]2-氟-2-脱氧-D-葡萄糖 (FDG)-PET 在了解肌张力障碍病理生理学方面的效用。我们检查了 2007 年 9 月至 2018 年 2 月期间在英国埃夫利娜伦敦儿童医院 (ELCH) 接受深部脑刺激手术评估的 267 名肌张力障碍儿童的 PET 扫描。使用统计参数映射 (SPM12) 分析了没有大体解剖异常(例如大囊肿、严重的脑室扩大;n = 240)的扫描结果。在 144/240 (60%) 例患有 10 种最常见的儿童期肌张力障碍的病例中检查了葡萄糖代谢模式,重点检查了 9 个解剖区域。使用 39 名成人对照者作为比较组。遗传性肌张力障碍与以下基因有关:TOR1A、THAP1、SGCE、KMT2B、HPRT1(莱施·尼汉病)、PANK2 和 GCDH(戊二酸尿症 1 型)。后天性脑瘫 (CP) 病例分为与早产 (CP-Preterm)、新生儿黄疸/核黄疸 (CP-Kernicterus) 和缺氧缺血性脑病 (CP-Term) 相关。每个肌张力障碍亚组都有不同的 FDG-PET 摄取改变模式。最常见的表现是苍白球、壳核或两者的局部葡萄糖代谢减慢,但 PANK2 除外,该病例的基底神经节代谢似乎正常。HPRT1 独特地表现出所有九个大脑区域的葡萄糖代谢减慢。颞叶葡萄糖代谢减慢见于 KMT2B 、HPRT1 和 CP-核黄疸。额叶代谢减慢见于 SGCE 、HPRT1 和 PANK2 。丘脑和脑干代谢减慢仅见于 HPRT1 、CP-早产和 CP-足月肌张力障碍病例。额叶和顶叶代谢亢进的组合仅见于 CP-足月病例。PANK2 病例表现出顶叶代谢亢进和小脑代谢减慢的明显组合,但壳核-苍白球葡萄糖代谢完整。 HPRT1 、PANK2 、CP-核黄疸和 CP-早产病例的小脑和岛叶葡萄糖代谢减慢,以及顶叶葡萄糖代谢亢进。研究结果为肌张力障碍的病理生理学提供了见解,并支持肌张力障碍发病机制的网络理论。每个肌张力障碍亚组的“特征”模式可以作为有用的生物标记,用于指导鉴别诊断和指导个性化管理策略。
虽然有些植物是从大自然中收集的,但有些是培养和生产的。但是,用于治疗目的的植物的很大一部分是从大自然中收集的。药物和芳香植物的最引人注目和研究的特征是其用于治疗目的。在世界许多国家,尤其是在不发达的国家中使用植物的治疗,诸如传统待遇,互补疗法,自然疗法等不同的名称。与工业的许多不同领域和分支在许多不同领域和分支中的药用和芳香植物的消费同时,这些植物的贸易量正在日益增加。随着贸易量的增长和需求的增长,增加药用植物生产机会的努力也在加速。随着贸易量的增长和需求的增长,增加药用植物生产机会的努力也在加速。
摘要尽管胰岛素疗法已存在一个多世纪,血糖监测也取得了进展,但糖尿病及其并发症仍然是一个沉重的负担。目前的药物治疗不持久,治疗结束后症状经常复发,而且不同患者的反应也不同。此外,许多药物的有效性会随着时间的推移而减弱,这凸显了对替代疗法的需求。维持 β 细胞质量和促进 β 细胞再生提供了更可治愈的治疗方法,而如果无法再生,细胞替代疗法可能是一种选择。对于这两种策略,提高 β 细胞存活率都至关重要。生长激素释放激素 (GHRH) 最初被发现是因为它能够刺激垂体产生和释放生长激素 (GH)。除下丘脑外,GHRH 还在外周组织中产生,其受体 GHRHR 在垂体、胰腺、脂肪组织、肠道和肝脏等组织中表达。多项研究表明,GHRH 及其类似物可增强体外和动物模型中产生胰岛素的胰腺 β 细胞的存活率。这些有益作用有力地支持了 GHRH 激动剂和拮抗剂在临床治疗人类代谢疾病或增强用于移植的细胞中 β 细胞存活率方面的潜力。在本综述中,我们将讨论下丘脑和下丘脑外 GHRH 在生理和病理背景下的代谢中的作用,以及其潜在机制。此外,我们还将讨论 GHRH 类似物对治疗代谢疾病的潜在有益作用。
摘要微生物参与各种代谢相互作用。这些相互作用的一个关键部分是不同细胞器、细胞和环境之间的分子交换。介导这种代谢交换的主要力量是转运蛋白。这种转运很难通过实验测量,因为几种转运机制仍然不透明。然而,通过代谢交换对细胞输入和输出的理论计算使得我们能够成功推断出生物体内和生物体间系统的运作方式。动力学、代谢和统计建模方法与组学数据相结合,增强了我们对代谢交换和物质资源分配的认识和理解。这种模型驱动的分析方法可以指导有效的实验设计,并为生物功能和控制提供新的见解。
线粒体是具有必需代谢活动的动态细胞器,被视为具有生物合成、生物能量学和信号传导功能的信号枢纽,可协调关键的生物途径。然而,线粒体可以影响与肿瘤发生相关的所有过程,从恶性转化为转移性播散。在这篇综述中,我们描述了线粒体代谢状态的改变如何导致典型恶性特征的获得,并讨论了最新的发现和许多未解答的问题。我们还强调,在癌细胞代谢的背景下扩大我们对线粒体调控和功能机制的理解可能是生物医学研究中的一项重要任务,从而为靶向线粒体治疗癌症提供了可能性。© 2020 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可的开放获取文章。(http://creativecommons.org/licenses/by-nc-nd/4.0/)
a 法国里昂大学神经肌基因研究所、克劳德·伯纳德里昂第一大学、CNRS UMR 5310、INSERM U1217、里昂 69008 b 法国高等师范学院生物学研究所(IBENS)、巴黎高等师范学院、CNRS、INSERM、巴黎科学与文学研究大学、巴黎 75005、法国 c 美国国立卫生研究院 NHGRI 未确诊疾病项目转化实验室、马里兰州贝塞斯达 20892、美国 d 美国哈佛医学院波士顿儿童医院神经内科、神经免疫学项目、马萨诸塞州波士顿 02115、美国 e 美国圣路易斯华盛顿大学医学院秀丽隐杆线虫模型生物筛选中心、密苏里州圣路易斯 63110、美国 f 美国圣路易斯华盛顿大学医学院儿科系美国密苏里州圣路易斯 63110 医学院,美国圣路易斯华盛顿大学医学院遗传学系,美国密苏里州圣路易斯 63110