1 Harish-Chandra 研究所,HBNI,Chhatnag Road,Jhunsi,Allahabad 211 019,印度 2 加尔各答大学应用数学系,92 Acharya Prafulla Chandra Road,加尔各答 700 009,印度 3 耶路撒冷希伯来大学 Racah 物理研究所,耶路撒冷,Ram Givat 1949
量子互联网连接远程量子处理器,这些处理器需要通过光子通道进行长距离交互和交换量子信号。然而,这些量子节点的工作波长范围并不适合长距离传输。因此,量子波长转换为电信波段对于基于光纤的长距离量子网络至关重要。在这里,我们提出了使用连续变量量子隐形传态的单光子偏振量子比特波长转换器,它可以有效地在近红外(适合与原子量子节点交互的 780/795 nm)和电信波长(适合长距离传输的 1300-1500 nm)之间转换量子比特。隐形传态使用纠缠光子场(即非简并双模压缩态),可以通过铷原子气体中的四波混合产生,使用原子跃迁的菱形配置。纠缠场可以以两个正交偏振态发射,相对相位锁定,特别适合与单光子偏振量子比特接口。我们的工作可能为实现长距离量子网络铺平道路。
通过利用一对量子比特之间的共享纠缠,可以将量子态从一个粒子传送到另一个粒子。最近的进展揭示了量子隐形传态的内在多体泛化,与引力有着巧妙而令人惊讶的联系。具体来说,量子信息的隐形传态依赖于多体动力学,这种动力学源于与引力全息对偶的强相互作用系统;从引力的角度来看,这种量子隐形传态可以理解为通过可穿越虫洞传输信息。在这里,我们提出并分析了一种新的多体量子隐形传态机制——被称为峰值隐形传态。有趣的是,峰值隐形传态利用的量子电路类型与可穿越虫洞隐形传态完全相同,但微观起源却完全不同:它依赖于一般热动力学下的局部算子的扩散,而不是引力物理。我们通过分析和数值方法证明了峰值尺寸隐形传态在各种物理系统中的普遍性,包括随机单元电路、Sachdev-Ye-Kitaev 模型(高温)、一维自旋链和带弦校正的体引力理论。我们的研究结果为使用多体量子隐形传态作为强大的实验工具铺平了道路,用于 (i) 表征强关联系统中算子的尺寸分布和 (ii) 区分一般和内在引力扰乱动力学。为此,我们提供了在捕获离子和里德堡原子阵列中实现多体量子隐形传态的详细实验蓝图;分析了退相干和实验缺陷的影响。
“哲学家”对世界的解释只有不同的解释;但是,重点是改变它。”但是,与基本肯定不同,基督教福音和共产主义目前是一致的。但协议进一步发展。独特地,教会宣布改变了世界,这是改变了人的结果。反思性人产生新的哲学;唯一的人将线索持有一个真正新的社会。正是这种信念,基于一个好消息,即“上帝在基督里,使世界与自己和解”,这使传福音不仅仅是理论或口号。它将其作为必要。在这一点上,问题提出了:我们如何通过传播传福音 - 对信仰圈子的扩大,以便它包括越来越多的人作为救世主,那些持续不断地信任基督的人 - 持续不断,传染性和引人注目?构成了一套原则,并勾勒出了一个素描,该计划仔细研究了一个计划,旨在从“特殊”和“特殊”中拯救福音派的概念,并属于“特殊”,并在本质上是一生的生活和见证人。以下页面中没有任何东西可以贬低上帝的精神所做的一切,并继续通过巨大的,一致的临时事业,例如穆迪,星期日或格雷厄姆。他的风格不被忽略。这很普通。这是直接的。另一方面,有很多东西使我们赢得了通过小团体进行的门徒赢得的胜利,并朝着会众的见证人 - 所有的人都计算出来,以证明我们与福音与我们所证明的福音与福音的生活之间的联系。作者的作品集中在我们在主和他的门徒中所看到的模式上,都充满了圣经。它始终呼应了思想的透明诚意,这些思想已经对其掌握的主题进行了长期思考。直到今天早上,我才听到一位广播演讲者的观察,在大多数情况下,我们都以两个方向移动:从单词到事物,或者从事物到单词。也就是说,如果我们不从理论和理想到具体情况的旅程,那么具体情况将在烟雾中丢失。从后者的危险中,我相信这个认真的量可以帮助我们实现。因此,很高兴表彰它。
摘要:纠缠态的分布是许多量子信息处理协议中至关重要的关键任务。一种常用的量子态分布设置设想在一个位置创建状态,然后通过一些量子通道将其发送到(可能不同的)远程接收器。虽然毫无疑问,也许直观地预料到,纠缠量子态的分布效率低于乘积态,但尚未对这种低效率(即纠缠态和分解态的量子态传输保真度之间的差异)进行彻底的量化。为此,在这项工作中,我们考虑了 n 个独立的振幅衰减通道,它们并行作用,即每个通道局部作用于 n 个量子比特状态的一部分。我们推导出了在初始状态存在纠缠的情况下,最多四个量子比特的乘积态保真度降低的精确分析结果。有趣的是,我们发现真正的多部分纠缠对保真度的影响比双量子比特纠缠更大。我们的结果暗示了这样一个事实:对于更大的 n 量子比特状态,产品状态和纠缠状态之间的平均保真度差异会随着单量子比特保真度的增加而增加,从而使后者成为不太值得信赖的品质因数。
摘要 基于多播的量子隐形传态(QT)在量子信息传输中得到广泛应用,即一个发送者通过量子纠缠信道向远距离的多个接收者发送不同的信息。本文引入了多输出QT方案,该方案处理任意m和(m+1)量子比特GHZ级态从一个发送者到两个接收者的同步传输情形。值得注意的是,该方案满足了同步多样化信息传输的要求,并且效率很高。此外,我们在IBM量子平台提供的16量子比特量子计算机和32量子比特模拟器上演示了上述量子多输出隐形传态方案的特殊情况的实现,然后在四种噪声环境中进行了讨论,并计算了输出状态的保真度。
其中 r 是 2 n 维实向量,H 是对称矩阵,称为哈密顿矩阵,不要与哈密顿算子 ˆ H 混淆。矩阵 H 可以假定为对称的,因为其中的任何反对称分量都会增加一个与恒等算子成比例的项(因为 CCR),因此相当于在哈密顿量上增加一个常数。当高阶项不显眼且可忽略不计时,通过二次哈密顿量来建模量子动力学非常常见,量子光场通常就是这种情况。此外,二次哈密顿量在其他实验中也代表了一致的近似,例如离子阱、光机械系统、纳米机械振荡器和许多其他系统。对于相互作用,量子振荡器的“自由”局部哈密顿量 ˆ x 2 + ˆ p 2 (以重新缩放的单位表示)显然是二次的。任何二次汉密尔顿量的对角化都是一个相当简单的数学程序。因为,正如我们将看到的,这种对角化依赖于识别彼此分离的自由度,所以由二次汉密尔顿量控制的系统在量子场论文献中被称为“准自由”。尽管它们的动力学很容易解决,但这样的系统仍然为量子信息理论提供了非常丰富的场景,其中用于分析二次汉密尔顿量的标准方法成为强大的盟友。
在本项目中,我们使用变分量子优化 (VQO) 研究了具有噪声资源的量子隐形传态协议。量子隐形传态是一项基本的量子信息论任务,其中 Alice 旨在使用共享纠缠资源和经典通信将未知量子态传送给 Bob。隐形传态协议包括 Alice 实施的测量、将测量结果传输给 Bob 的经典信道以及 Bob 根据测量结果实施的一组校正操作。对于最大纠缠态,Bennett 等人提出的著名标准隐形传态协议。[1] 以贝尔测量和泡利校正的形式定义,给出了一个完美的协议。然而,在存在噪声的情况下,这种完美的隐形传态协议通常是不可能的,相反,人们的目标是通过找到合适的测量和校正操作来最大化协议所谓的隐形传态保真度。在这里,我们使用在 PennyLane 框架中模拟的 VQO ansatz 来寻找实现噪声纠缠资源状态非经典保真度的隐形传态协议。我们对 Badziag 等类的具有幺正和噪声元素的隐形传态协议进行了详细的数值研究。状态,它们是两个加权贝尔态的混合。此外,我们研究了量子三重-沃纳态和量子四重-沃纳态,它们代表了三级或四级量子系统内完全混合和最大纠缠态的混合谱,可用作隐形传态协议中的纠缠资源。