得分蒸馏采样(SDS)已被证明是一个重要的工具,可以使大规模扩散先验用于在数据贫困域中运行的任务。不幸的是,SDS具有许多特征性伪像,这些伪影限制了其在通用应用中的有用。在本文中,我们通过将其视为解决从源分布到目标分布的最佳成本传输路径来理解SD及其变体的行为的进展。在这种新的解释下,这些方法试图将损坏的图像(源)传输到自然图像分布(目标)。我们认为,当前方法的特征伪影是由(1)最佳路径的线性近似以及(2)源分布估计差的差。我们表明,校准源分布的文本条件可以产生高质量的生成和翻译结果,而几乎没有额外的开销。我们的方法可以轻松地在许多域上应用,匹配或击败专业方法的性能。我们在文本到2D,基于文本的NERF优化,将绘画转换为真实图像,光学错觉生成和3D素描到现实中演示了其实用性。我们将我们的方法与现有的分数蒸馏采样方法进行了比较,并表明它可以用逼真的颜色产生高频细节。
量子理论已在众多实验室实验中得到成功验证。但是,这种有效描述微观物理系统行为及其预测的量子纠缠等现象的理论是否仍适用于大尺度?从实际角度来看,如何使量子密钥分发(即通过量子力学定律确保远距离各方之间建立密钥的安全性)在全球范围内具有技术实用性?由于光子在光纤和地面自由空间中的损耗,单个光子的直接传输所能达到的距离仅限于几百公里。一种在长距离和相对论范围内测试量子物理并从而实现灵活的全球量子网络的有前途的途径是使用卫星和太空技术,其中的一个显著优势是光子损耗和湍流主要发生在大气层约 10 公里以下,而大多数光子在太空中的传输路径几乎处于真空中,几乎没有吸收和退相干。回顾了自由空间量子实验的进展,重点介绍了快速发展的墨子号卫星量子通信。讨论了天地一体化量子网络的前景以及利用卫星在太空进行的基础量子光学实验。
张海泉 1,# 李淑良 2,# 杭欢成 3,# 王仁娟 1 程长静 3 Kuzin Victor Fedorovich 4 麦贤民 2,* 摘要 木材具有强度高、可再生、隔热/降噪/调湿性能好等特点,是一种理想的绿色建筑材料。然而,木材中丰富的营养成分使木材容易受到微生物的侵蚀,限制了其在建筑领域的应用。本文报道了一种新颖的防霉技术,该技术将二氧化钛 (Ti 0.87 O 2 ) 纳米片自发填充到木材材料的开放孔隙中。基于 Ti 0.87 O 2 纳米片的高透光率,所制备的复合木材保留了木材原有的纹理和颜色。纤维素/木质素的羟基与二氧化钛的Ti 4+之间存在多个配位键,增强了木质材料与Ti 0.87 O 2 纳米片界面的稳定性,Ti 0.87 O 2 填充介质切断了氧气、水、营养物质及微生物的传输路径,使得复合木材具有良好的抗霉性,因此该改性技术使得木材在结构、装饰领域具有巨大的应用潜力。
光子模块,将光纤和动力电缆组合的线束,多个4K摄像头,光检测和射程(LIDAR)设备以及雷达。2。研究的背景是实现高级自主驾驶,高容量和低延迟的车载网络,该网络可以容纳越来越多的电子设备,例如摄像机和传感器,这是必不可少的。此外,该网络必须满足特定于车辆的严格要求,例如环境阻力,电磁兼容性和可靠性。在这项研究中,为了确保一个高度可靠的系统,团队拟议的虹吸管是一个通信网络,其中半导体激光器仅放置在处理车辆核心功能的中央电气控制单元(ECU)的主设备中。同时,基于硅光子集成技术的调节器/接收器被放置在管理车辆每个部分的区域ECU的网关设备中。通过二氧化硅单模式光纤促进它们之间的通信。3。研究设计和发现Siphon具有一个物理层,该物理层由数据传输网络(D-Plane)组成,具有超过50 GB/s的容量和控制信号传输网络(C-Plane)。它被设计为使用硅光子技术通过复制传输路径和光源来实现的冗余,以低成本和高度可靠的方式制造(图1)。从主设备传输的光穿过每个网关设备。
在电池管理系统(BMS)中,单个单元格和电池监视器电路之间存在广泛的接线连接。这些接线连接对于通过细胞监视器进行可靠的细胞参数监视,包括电压,电流,温度和其他连接至关重要。此外,这些接线连接可能是电池被动平衡放电的当前路径或继电器控制信号的传输路径。BMS中要管理的单元格数通常非常大,因此需要使用大量的接线连接。这些接线连接众多,有些甚至很长,因为它们通常需要在不同的印刷电路板(PCB)和PCB和电池组之间跨越(包括许多单独的单个单独的单元)。他们还需要许多连接组件的结合使用。应大力避免BMS中开路的发生。毕竟,如果单元格经历开机,则意味着对其状态的有效监测将被削弱或丢失,而无监测的细胞会对整个BMS构成隐藏的安全危害,并威胁到任何未知时间对系统致命的威胁。确实发生了打开的电线时,主要任务是快速,准确,有效地确定开路的位置并及时提供通知。有效,准确的开放式检测算法将大大提高BMS的可靠性,并促进BMS和电池组的故障排除。在手动故障排除过程中,算法通过算法进行准确的故障定位可以有效地减少许多不必要的重复检查以及拆卸和组装工作。
在室温下制备 p 型氧化锡 (SnO) 薄膜对传统方法提出了重大挑战,这主要是由于 SnO 的电各向异性和亚稳态。由于这种各向异性,在 SnO 中产生具有最佳迁移率的有效空穴载流子需要细致的热退火,但这受到 SnO 亚稳态的制约。在这项工作中,我们采用离子束辅助沉积 (IBAD) 在室温下制备 p 型 SnO 薄膜。这些薄膜具有纳米晶结构,表现出良好的电学性能,霍尔迁移率为 2.67 cm2V-1s-1,空穴浓度为 5.94×1017cm-3,尤其是无需退火处理。我们的研究揭示了霍尔迁移率和载流子浓度随 IBAD 过程中氩气流量变化而呈现的独特火山形趋势。这种关系与薄膜的光学性质、结构相和化学状态的变化相关,对于理解室温制备的 SnO 薄膜中 p 型导电性的起源至关重要——这一主题在当前文献中仍未得到解决。我们观察到迁移率增强与晶格无序性降低之间存在直接相关性,而空穴载流子浓度增加与氧间隙形成之间存在很强的相关性。我们还强调,中间相组成在确定 SnO 薄膜的无序程度方面起着至关重要的作用,这对于创建传输路径和空穴载流子形成所需的氧环境至关重要。这些见解有助于指导室温制备的 p 型 SnO 薄膜的设计和表征,从而推动大面积柔性电子领域的进步。
微波干扰可能通过一系列传播机制产生,这些机制各自的主导性取决于气候、无线电频率、感兴趣的时间百分比、距离和路径地形。在任何时候,可能存在一种或多种机制。主要干扰传播机制如下: – 视距(图1):最直接的干扰传播情况是在正常(即混合良好)大气条件下存在视距传输路径。但是,当子路径衍射导致信号电平略高于正常预期时,可能会产生额外的复杂性。此外,除了最短路径(即长度超过 5 公里的路径)之外,由于大气层结导致的多径和聚焦效应,信号电平通常可以在短时间内显著增强(见图2)。– 衍射(图1):在视线之外和正常条件下,衍射效应通常在存在显著信号电平的地方占主导地位。对于异常短期问题不重要的服务,衍射建模的精度通常决定了可以实现的系统密度。衍射预测能力必须具有足够的实用性,以覆盖光滑地球、离散障碍物和不规则(非结构化)地形情况。– 对流层散射(图1):此机制定义了较长路径(例如超过 100-150 公里)的“背景”干扰水平,此时衍射场变得非常弱。但是,除了涉及敏感地球站或非常高功率干扰源(例如雷达系统)的少数特殊情况外,通过对流层散射产生的干扰水平太低,不会产生重大影响。– 表面管道(图2):这是水面上和平坦沿海陆地区域最重要的短期干扰机制,可在长距离(海上 500 公里以上)产生高信号水平。在某些条件下,此类信号可能超过等效“自由空间”水平。
在移动通信领域,制造商将有源元件直接安装到天线中已成为一项长期确立的标准。最近,随着对更复杂的技术解决方案的需求越来越普遍,雷达系统制造商开始将越来越多的元件集成到天线中。好处是什么?系统效率大幅提高,信号完整性增强。对于雷达旋转接头而言,这意味着不同频带的传统 RF 模块正在被各种介质耦合器、电源电流路径和信号传输路径所取代。介质耦合器用于通过液体介质创建冷却回路,如果需要,还用于通过干燥空气对 RF 线路部分进行通风和/或降压。电源电流主要用于为雷达放大器供电,雷达放大器的输出功率通常可达几百千瓦。此外,还为天线加热系统提供该模块。来自有源天线设备的电信号和向有源天线设备发送的电信号可通过多通道光纤旋转接头、滑环或非接触式耦合器进行光学传输。但是,光学旋转接头的缺点是它需要整个系统的中央内孔。我们的新型非接触式信号传输模块不存在此缺点。根据要求,可以实现任意直径的内孔(关键词空心轴)。定子和转子单元之间的实际信号传输以电磁方式进行,在此背景下要传输的信号经过数字调制。作为目前所有技术领域的标准,以太网也被用作雷达领域数据传输的标准接口。这就是 SPINNER 将新开发的模块配置为非接触式以太网耦合器(以太网模块)的原因。这种耦合器之所以被称为模块,是因为它有自己的轴承支撑。该模块的直径可自由扩展。通过堆叠,还可以配置它以创建多通道设计。非接触式解决方案的主要优势自然是其无磨损操作。然而,与基于接触的设计相比,另一个优势是最大数据速率不受模块大小的影响。
城镇规划的最重要方面之一是对车辆的检测和跟踪。在过去的十年中,人们对基于视觉的交通监控系统的关注得到了很多关注。速度监控和车辆检测可以有助于此。监视系统提供了各种数据,包括车辆,交通拥堵和车辆速度的数量。速度是交通事故的主要原因之一。如果您想知道汽车的行驶速度是否比允许的速度快,则可以从视频中提取帧并比较两个位置的速度。为了从背景中提取汽车,提供了许多算法。雷达系统历史上已被用于这些目的,尽管它们具有某些缺点。因此,已经开发了使用图像处理的多种使用图像处理的策略,以解决现在正在使用的系统中的缺点。[7]但是,可能影响这些图像处理技术的主要变量是照明,相机噪声和分支挥手。为了收集更多的车辆和交通数据,当前的研究旨在开发一个自动的车辆计数系统,该系统也可以检测速度。该系统将能够处理从道路上的固定摄像机记录的视频,例如安装在交通交叉路口 /交界处附近的CCTV摄像头,并计算在给定时间内通过位置的车辆数量。车辆速度监视在交通执法中起着重要作用。雷达的缩写是无线电检测和范围。雷达技术由雷达枪和雷达检测器组成,传统上是用于监视车速的。雷达系统产生的电磁能被转换为无线电波,可以将其引向大气并以光速移动,或者每秒3.08 x 108米,或每秒约186,000英里。雷达可用于检测对象并范围范围,或确定其与雷达系统的位置和距离,这要归功于这些信号的传输以及返回的能量的收集或返回的脉冲,这些脉冲在雷达传输路径中从对象中弹起。雷达使用一种现象,通过该现象,汽车相对于雷达的运动修改了返回信号无线电波的频率以检测物体的速度(例如,当带有固定雷达枪支的警官正在检测汽车移动的速度时)。当汽车接近雷达设备时,返回信号无线电波频率上升。然后,雷达枪可以使用这种频率转移来计算车辆的速度。多普勒效应是指该原理,该原理指出源相对于对象的相对运动会影响发射脉冲的频率与返回脉冲频率之间的差异。因此,可以通过测量传输和接收到的回声之间的脉冲特性差来确定对象的速度,而其距离可以通过测量检测返回脉冲所需的时间来确定其距离。这产生了称为径向速度的速度,该速度沿雷达指向的方向。要记住的一件事是,用于确定移动物品速度(例如汽车)的脉冲特性的变化将依赖于汽车与雷达的相对位置。