八面装有湿度传感器的墙壁中的两面墙壁的相对湿度测量结果与 MOIST 预测结果非常吻合。另外两面墙壁的相对湿度测量结果无法与 MOIST 进行比较,因为这些墙壁
设计病毒载体进行声学靶向基因传递 Hongyi Li 1、John E. Heath 1、James S. Trippett 3、Mikhail G. Shapiro 2,*、Jerzy O. Szablowski 2,3,4 * 1 美国加利福尼亚州帕萨迪纳市加州理工学院生物与生物工程部 2 美国加利福尼亚州帕萨迪纳市加州理工学院化学与化学工程部 3 美国德克萨斯州休斯顿市莱斯大学生物工程系 4 美国德克萨斯州休斯顿市莱斯大学莱斯神经工程计划 * 通信地址为 MGS (mikhail@caltech.edu) 和 JOS (jszab@rice.edu) 摘要 靶向基因传递到大脑是神经科学研究的重要工具,并且具有治疗人类疾病的巨大潜力。然而,腺相关病毒 (AAV) 等常见基因载体的位点特异性递送通常通过侵入性注射进行,这限制了它们的研究和临床应用范围。或者,非侵入性地进行的聚焦超声血脑屏障开放 (FUS-BBBO) 使 AAV 能够从体循环进入大脑的位点特异性。然而,当与天然 AAV 血清型结合使用时,这种方法的转导效率有限,需要接近组织损伤极限的超声参数,并导致不良的外周器官转导。在这里,我们使用高通量体内选择来设计专门设计用于 FUS-BBBO 部位局部神经元转导的新型 AAV 载体。所得载体显著增强了超声靶向基因递送和神经元向性,同时减少了外周转导,使靶向特异性提高了十倍以上。除了增强唯一已知的非侵入性靶向基因递送到特定大脑区域的方法外,这些结果还确立了 AAV 载体进化为特定物理递送机制的能力。
心血管疾病仍然是全球范围内导致死亡的主要原因,其中血浆低密度脂蛋白胆固醇 (LDL-C) 水平高(或称高胆固醇血症)和血浆甘油三酯水平高(或称高脂血症)是风险的主要决定因素。[1,2] 降低胆固醇是一个有吸引力的治疗目标,LDL-C 降低 30-40% 与心血管疾病风险同时降低相关。[3] 他汀类药物是目前的标准治疗方法,由于不耐受和增加剂量的副作用,10-20% 的高危患者群体被忽视,这促使人们从遗传学角度寻找替代品。 [3,4] 当前蛋白转化酶枯草溶菌素/kexin 9 型 (PCSK9) 的功能获得性突变被确定为常染色体显性高胆固醇血症的病因,导致患者的 LDL-C 水平升高和早期冠心病 (CHD) 时,人们发现了第一个心脏保护基因靶点。[5] PCSK9 的功能丧失序列变异导致 LDL-C 水平显著降低 (40%) 和 CHD 降低 88%。[6] PCSK9 是一种在肝脏中表达的 LDL 受体 (LDLR) 拮抗剂,因此过表达会导致 LDL 受体减少,并降低血浆中的 LDL-C 清除率。[7] 针对 PCSK9 的单克隆抗体被认为是解决他汀类药物尚未满足的重大需求的潜在解决方案。 [8] 然而,PCSK9 抗体(例如 alirocumab)在临床试验中表现出不良反应,包括注射部位反应、神经认知事件、眼科事件和抗药抗体产生。[9] 小干扰 RNA(siRNA),例如 inclisiran,已被开发用于提供与抗体疗法类似的心脏保护作用。[10] 虽然这些 siRNA 能够显著下调 PCSK9,但与这种基因操作方式相关的高脱靶效应仍然令人担忧。CRISPR/Cas9 介导的基因破坏为更高精度、更低频率的治疗提供了一种替代方案。[11]
摘要:神经系统疾病通常无法治愈而使人衰弱。当前大多数疗法都是姑息性的,而不是改善疾病。因此,非常需要新的治疗神经系统疾病的策略。基于mRNA的治疗药具有巨大的治疗这种神经系统疾病的潜力。但是,交付的挑战限制了其临床潜力。脂质纳米颗粒(LNP)是大脑的有前途的递送载体,因为它们的毒性更安全和效果更高。尽管如此,对于LNP介导的mRNA传递到大脑的信息知之甚少。在这里,我们采用了基于MC3的LNP,并成功地将CRE mRNA和CAS9 mRNA/AI9 SGRNA传递到成年AI9小鼠脑;在整个纹状体和海马中,大于一半以上的海马,通过直接的脑内注射MC3 LNP mRNA沿着罗斯特·尾轴穿透。MC3 LNP CRE mRNA成功转染了纹状体中的细胞(效率约为52%)和海马(约49%的效率)。此外,我们证明了MC3 LNP CAS9 mRNA/AI9 SGRNA编辑了纹状体中的细胞(效率约为7%)和海马(约3%效率)。进一步的分析表明,MC3 LNP介导mRNA递送到多种细胞类型,包括大脑中的神经元,星形胶质细胞和小胶质细胞。总体而言,基于LNP的mRNA递送在脑组织中有效,并显示出对治疗复杂神经系统疾病的巨大希望。
全国各地的年轻人现在可以通过年轻人的免费公交旅行计划获得免费的公共交通,我们正在支持个人和企业,以使更健康,更可持续的旅行选择。我们正在正面处理在气候紧急情况下运输的作用,同时意识到运输的重要作用在日常生活中继续发挥作用 - 确保我们能够获得教育,工作,培训和社交活动。随着许多家庭和企业面临着显着增加的生活成本,我们认识到运输支出构成了另一个(通常是不可避免的)费用。我们的目的是确保在全国范围内获得负担得起的,可访问和可持续的运输。我们知道,未来的挑战是巨大的,并且将私人汽车的使用和过渡减少到日常旅程的更多步行,骑行或骑自行车将对某些人面临更大的挑战。
体内基因治疗面临的最大挑战之一是载体介导高度选择性的基因转移到特定治疗相关细胞群中。我们在此介绍 DARPin 靶向 AAV(DART-AAV),展示针对人类和鼠 CD8 的 DARPin。将 DARPin 插入 AAV2 和 AAV6 衣壳蛋白 1(VP1)的 GH2/GH3 环中,可实现对 CD8 阳性 T 细胞的高选择性,同时基因传递活性不受影响。值得注意的是,衣壳核心结构未发生改变,突出的 DARPin 可检测到。在复杂的原代细胞混合物中,包括供体血液或小鼠全身注射,CD8 靶向 AAV 在选择性、靶细胞活力和基因转移率方面远远优于未改造的 AAV2 和 AAV6。在体内,将单个载体注射到经过条件化的人源化或免疫功能正常的小鼠中,可击中高达 80% 的活化 CD8+ T 细胞。虽然在非活化条件下基因转移率显著降低,但在将 Cre 递送到指示小鼠中时,仍然可以检测到 CD8+ T 细胞中的选择性基因组修饰。在两种小鼠模型中,CD8+ T 细胞的选择性接近绝对,但肝脏的靶向性极强。本文描述的 CD8-AAV 扩展了免疫学研究和体内基因治疗选择的策略。
SLC4A10 是一种质膜结合转运蛋白,它利用 Na + 梯度驱动细胞 HCO 3 − 吸收,从而介导酸排出。在哺乳动物的大脑中,SLC4A10 在主要神经元和中间神经元以及脉络丛(调节脑脊液产生的器官)的上皮细胞中表达。通过对来自五个不相关家族的九名受影响个体的样本进行下一代测序,我们发现双等位基因 SLC4A10 功能丧失变异会导致人类出现临床上可识别的神经发育障碍。该病的主要临床特征包括婴儿肌张力减退、所有领域的精神运动发育迟缓和智力障碍。受影响的个体通常表现出与自闭症谱系障碍相关的特征,包括焦虑、多动和刻板动作。有两例患者在出生后的头几年内报告了单独的癫痫发作,另一例患儿在脑电图上显示双颞叶致癫痫放电,但没有明显的临床癫痫发作。据报道,出生时枕额周长正常,但 10 名患儿中有 7 名患有进行性出生后小头畸形。神经放射学特征包括与枕额周长相比脑容量相对保留、特征性狭窄(有时呈“裂缝状”)侧脑室和胼胝体异常。缺乏 SLC4A10 的 Slc4a10 − / − 小鼠也表现出较小的侧脑室和轻微的行为异常,包括适应延迟和双物体新物体识别任务的改变。Slc4a10 − / − 小鼠和患儿的脑室塌陷表明 SLC4A10 在脑脊液的产生中起着重要作用。然而,值得注意的是,尽管脑脊液在发育和成人大脑中发挥着不同的作用,Slc4a10 − / − 小鼠的皮层看起来总体上是完整的。与突触标记物的共染色表明,在神经元中,SLC4A10 定位于抑制性而非兴奋性的前睡前小睡。这些发现得到了我们的功能研究的支持,这些研究显示在 Slc4a10 − / − 小鼠中抑制性神经递质 GABA 的释放受到损害,而兴奋性神经递质谷氨酸的释放得以保留。操纵细胞内 pH 值可部分挽救 GABA 的释放。我们的研究共同定义了一种与 SLC4A10 中的双等位基因致病变异相关的新型神经发育障碍,并强调了进一步分析 SLC4A10 功能丧失对大脑发育、突触传递和网络特性的影响的重要性。
西班牙马德里; albaorea@ucm.s(A.O.-S); soniica01@ucm.s(sc.-l); nalvado@uucm.s(N.-T。); palmart@ucm.s(P.-C。); silviarda@gmail.com(S.R.); egabicag@uucm.s(例如); magnendibo@sal.s(M.-E。); Sanitarias Sanitarias San Carlos(Idissc)。曼努埃尔(Manuel)。 ALVAREZLOPEZ@odachietza.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.-L.安杜。奥地利Inssbruck 6020;单元。 alberto.oc.or.org弗朗西斯科约瑟(Franciscojose)。这是一个腰带机构。); mmlorent@pdi.ucm.s(M.L。);电话。: +34-913945034(G.V.)†这些作者与高级作者同样为本文做出了贡献。
由于设备和互连的缩小以及电子、航空航天和医疗应用的先进封装和组装,微纳米级电子元件的制造变得越来越苛刻。增材制造技术的最新进展使得制造微尺度 3D 互连结构成为可能,但制造过程中的传热是影响这些互连结构可靠性制造的最重要现象之一。在本研究中,研究了三维 (3D) 纳米粒子堆积的光吸收和散射,以深入了解纳米粒子内的微/纳米热传输。由于胶体溶液的干燥会产生不同的纳米粒子构型,因此研究了三种不同铜纳米粒子堆积构型中的等离子体耦合:简单立方 (SC)、面心立方 (FCC) 和六方密堆积 (HCP)。分析了单散射反照率 (ω) 与纳米颗粒尺寸、填充密度和配置的关系,以评估纳米颗粒填充物中 Cu 纳米颗粒的热光特性和等离子体耦合的影响。该分析深入了解了铜纳米颗粒中等离子体增强的吸收及其对纳米颗粒组件激光加热的影响。[DOI:10.1115/1.4047631]