需求:•介电层带隙能大于底物(〜10 k b t或更多)•〜1至〜100 nm的厚度可变厚度•高度绝缘材料具有低意外掺杂浓度的高度绝缘材料•高质量的界面无陷阱和缺陷
芯片包装相互作用包装的影响是整体上互连结构遭受特殊的外部应力。以塑料翻转包裹为例;在填充底漆之前,最高的热载荷发生在模具固定期间。对空气间隙结构的CPI效应进行了250°C的反射温度的无PB-焊料。包装中的基板是有机的,模具尺寸为8x8 mm 2。在略有不同的3D有限元模型上,多级子模型技术和VCCT用于计算最外层焊球下相关接口处的裂纹驱动力。[8,9]在蚀刻停止/钝化(ESL)和低k介电或气隙之间,在每个金属水平上放置在每个金属水平上放置的Horizontal裂纹计算错误。每个裂纹宽0.1 µm,长2 µm,在接线方向上延伸,如图4所示。在完整的低K集成方案中,由于SIO2和低K层之间的弹性不匹配,在M3间的裂纹3中,ERR最高。首先检查了空气间隙实施的效果,用于跨层次的全气隙结构,在该结构中,空气间隙取代了M3的所有金属间介电(IMD)。这导致裂纹3中的ERR中的大约5倍急剧增加。应注意的是
Linh 等人 35 发现用离子半径较大的碱金属(M = Li、Na 和 K)取代(Bi 0.5 M 0.5 )TiO 3 会增加其直接带隙。将 MCaF 3(M = K、Cs)中的 K 位取代为 Cs 位,可将带隙从间接变为直接,从而改善光学特性。36 Gillani 等人还报道将碱土金属(Mg、Ca、Ba)掺杂到 SrZrO 3 中可使带隙从间接变为直接。37,38 此外,利用静水压力将带隙从间接变为直接被证明是有益的,就像在许多立方钙钛矿中所看到的那样。 39 – 44 通过施加外部压力,卤化物立方钙钛矿 CsBX 3 (B ¼ Sn, Ge; X ¼ Cl, Br) 的带隙减小到零,从而导致半导体到金属的转变。45 – 49 在静水压力下,还对 Ca 基立方碱金属卤化物钙钛矿 KCaX 3 (X ¼ F, Cl) 50,51 和 ACaF 3 (A ¼ Rb, Cs) 进行了第一性原理研究。52,53
由于半导体纳米粒子具有独特的机械、光学、光子和电学特性,科学界对其研究突飞猛进。[1-4] 借助 Wein2K 代码,他们最近报道了 Zn1–xMnxS (0 ≤ x ≤ 1) 的机械、结构、电学、磁性和光学行为。纳米材料的质量很大程度上取决于它们的表面积与体积的比,这会影响其中的几个属性。[5-8] 半导体的带隙是其最重要和最基本的特性之一。半导体材料的电学和光学特性从根本上受带隙的影响。[9-14] 因此,为了更好地了解它们的特性,研究 SCN 的带隙增长至关重要。半导体的大带隙使其在各种应用中都很有用。尽管硅光子纳米器件已经被广泛制造和利用,但体硅的间接和微小带隙限制了它的利用。许多理论和实验研究人员采取了与尺寸相关的带隙立场。[15-17] 利用光致发光光谱,
在精密应用的新型普通电阻和电压标准开发领域开展科学合作,开发 1 欧姆至 100 欧姆范围内低负载依赖性的电流测量电阻。至 10 kOhm,具有高时间稳定性。 开发该项目的带隙电压标准
在精密应用的新型普通电阻和电压标准开发领域开展科学合作,开发 1 欧姆至 100 欧姆范围内低负载依赖性的电流测量电阻。至 10 kOhm,具有高时间稳定性。 开发该项目的带隙电压标准
材料综合,形态控制和设备工程已将PCE推向了19%以上的单连接设备,而串联配置的PCE超过20%。[5 - 8]关键的发展是非富裕受体(NFAS)的持续进展。特定的,低于1.6 eV的典型光学带隙(E G)的低带隙材料可以增强太阳光利用率:AM 1.5G太阳能光谱的光线分配使约51%的太阳能光子光子在近交易所区域(NIR)区域中发现。[9]此外,在这些材料中发现了其他吸引人的物理特性,包括强偶极矩和低激子结合能。[10]这些在NIR地区吸收的低频带NFA吸引了许多新兴的PV技术的兴趣。它们已在半透明的OPV中广泛用于各种应用,包括Agrivoltaics,电力生成窗户,热绝缘,磨损电子设备和建筑物集成的PV。[9,11,12]此外,它们将吸收范围扩展到NIR光谱的能力已在串联OPV中,[13-16] Ternary opvs,[17-19]和nir-absorting有机光探测器。[20 - 23]
宽带隙 (WBG) 半导体材料,例如碳化硅 (SiC)、氮化镓 (GaN) 或氧化镓 (Ga2O3),使电力电子元件比硅基 (Si) 元件更小、更快、更可靠、更高效。目前,全球约有一半的总能源消耗是电力,预计到 2030 年,80% 的电力将通过电力电子设备流动。然而,基础科学和材料科学还有很大的发展空间;宽带隙材料确实无处不在;几乎整个地壳都是由宽带隙氧化物形成的,还有许多硫族化合物、卤化物、有机和生物材料也是宽带隙材料,还有许多其他可能性。本期特刊是一系列文章的集合,报告了最近获得的结果的简要评论以及在这一广泛研究领域产生的新发现。
碳化硅 (SiC) 和氮化镓 (GaN) 器件将逐渐取代现有的硅技术,因为硅已经达到其物理电学性质的固有极限。 因此,自 2007 年以来,硅基器件已不再能够跟上摩尔定律的步伐,曲线出现了平台期:摩尔预测,集成电路制造商每年应该能够将单个硅芯片上可容纳的晶体管数量翻一番。 相反,晶体管尺寸正在以较慢的速度减小;自 2007 年以来,尺寸减小的进程已明显放缓。 美国劳伦斯伯克利国家实验室 (LBNL) 最近制造的最小硅 MOSFET 的宽度(沟道长度)仅为 7 纳米,即仅比单个硅原子的尺寸大一个数量级。 在这种几何尺寸下,可能会发生量子隧穿,并且器件将失去控制电流流动的能力。因此,最近的发展意味着硅技术正在接近该材料的理论物理极限。由于硅的特性阻碍了器件性能的进一步提高,微电子研发变得更具挑战性,需要投入大量资金,有时似乎不经济,因为它太昂贵了。