摘要:Van der Waals(VDW)磁铁很有希望,因为它们具有掺杂或合金组成的可调磁性能,其中磁相互作用的强度,它们的对称性和磁各向异性可以根据所需的应用来调节。到目前为止,大多数基于VDW磁铁的自旋设备都限于低温温度,其磁各向异性有利于平面外或倾斜的磁化方向。在这里,我们报告了室温外侧自旋阀设备,其平面内磁化和VDW Ferromagnet的自旋极化(CO 0.15 Fe 0.85)5 GETE 2(CFGT)在异性捕获岩中使用墨烯。密度功能理论(DFT)计算表明,各向异性的幅度取决于CO浓度,是由CO在最外面的FE层中取代引起的。磁化测量结果揭示了上述CFGT中的室温铁电磁作用,并在室温下清除了延迟。由CFGT纳米层和石墨烯组成的异质结构用于实验实现旋转阀装置的基本构件,例如有效的自旋注入和检测。对自旋转运和汉尔自旋进液测量的进一步分析表明,在与石墨烯界面处的界面上具有负自旋极化,并由计算出的CFGT状态的自旋偏振密度支持。在室温下,CFGT的平面磁化证明了其在石墨烯侧旋转式设备中的有用性,从而揭示了其在自旋技术中的潜在应用。关键字:范德华磁铁,自旋阀,石墨烯,范德华异质结构,2D磁铁,平面磁化,自旋极化M
摘要:近年来,光子计算的显着进步突显了需要光子记忆,尤其是高速和连贯的随机记忆。应对实施光子记忆的持续挑战才能充分利用光子计算的潜力。基于刺激的布里鲁因散射的光子传声记忆是一种可能的解决方案,因为它一致地将光学信息传递到高速下的声波中。这样的光声内存具有巨大的潜力,因为它满足了高性能光随机记忆的关键要求,因为它的相干性,芯片兼容性,频率选择性和高带宽。但是,由于声波的纳秒衰减,到目前为止,迄今为止的存储时间仅限于几纳秒。在这项工作中,我们通过实验增强光声内存的固有存储时间超过1个数量级,并在存储时间为123 ns后连贯地检索光学信息。这是通过在4.2 K处高度非线性纤维中使用光声记忆来实现的,从而使内在的声子寿命增加了6倍。我们通过使用直接和双同性恋检测方案测量初始和读数光学数据脉冲来证明我们的方案能力。最后,我们分析了4.2 - 20 K范围内不同低温温度下光声记忆的动力学,并将发现与连续波测量值进行了比较。关键字:布里渊散射,光子神经形态计算,光学记忆,非线性光学,低温■简介延长的存储时间不仅对光子计算,而且对需要长声子寿命的Brillouin应用程序,例如光声过滤器,真实时延迟网络和微波光子学中的合成器。
摘要:Van der Waals(VDW)磁铁很有希望,因为它们具有掺杂或合金组成的可调磁性能,其中磁相互作用的强度,它们的对称性和磁各向异性可以根据所需的应用来调节。到目前为止,大多数基于VDW磁铁的自旋设备都限于低温温度,其磁各向异性有利于平面外或倾斜的磁化方向。在这里,我们报告了室温外侧自旋阀设备,其平面内磁化和VDW Ferromagnet的自旋极化(CO 0.15 Fe 0.85)5 GETE 2(CFGT)在异性捕获岩中使用墨烯。密度功能理论(DFT)计算表明,各向异性的幅度取决于CO浓度,是由CO在最外面的FE层中取代引起的。磁化测量结果揭示了上述CFGT中的室温铁电磁作用,并在室温下清除了延迟。由CFGT纳米层和石墨烯组成的异质结构用于实验实现旋转阀装置的基本构件,例如有效的自旋注入和检测。对自旋转运和汉尔自旋进液测量的进一步分析表明,在与石墨烯界面处的界面上具有负自旋极化,并由计算出的CFGT状态的自旋偏振密度支持。在室温下,CFGT的平面磁化证明了其在石墨烯侧旋转式设备中的有用性,从而揭示了其在自旋技术中的潜在应用。关键字:范德华磁铁,自旋阀,石墨烯,范德华异质结构,2D磁铁,平面磁化,自旋极化M
课程(截至2024年3月)Giovanni Hearne教授(ORCID ID:0000-0002-1662-7831)物理系,约翰内斯堡大学(UJ)物理学小组教授Mössbauer和高压研究实验室的高压研究实验室和高压力研究实验室的职位和高压研究实验室的职位:GQEBERHA-SA:GQEBERHA:15 3月15日,:++ 27-11-5593849 / ++ 27-1-7268999953电子邮件:grhearne@uj.ac.ac.ac.za Scientific Carecolific Carecolific Carecutific Carecutific 2012年至今:物理学教授,约翰内斯堡大学,约翰内斯堡大学,约翰内斯堡大学,约翰内斯堡,约翰内斯堡,约翰内斯堡,2009-2009-2009-2012: 2007-2009:萨罗尼亚州约翰内斯堡的威特沃特斯兰大学物理学学院的读者兼副教授。1995-2006:萨利亚州约翰内斯堡的威特沃特斯兰大学物理学学院的讲师兼讲师和高级讲师。1992-1994:以色列电视大学高压研究小组物理与天文学学院博士后副学院。1993:博士(物理),威特沃特斯兰大学,约翰内斯堡,萨。 “通过使用119snMössbauer光谱法的Sn-Base A15超导体的晶格动力学”。 奖学金和科学输出NRF评估和评级:B2(截至2023年1月)研究兴趣实验性凝分物理物理。 57FeMössbauer效应光谱在可变的低温温度(低至1.5 K)和高压(最多1兆巴)处。 高压物理学(钻石和宝石细胞,DAC和GACS)。 在高压下,激光光谱,XRD,电气传输和基于同步加速器的技术(XAS)。 CO 2在DAC中加热。 仪器物理(电子)。1993:博士(物理),威特沃特斯兰大学,约翰内斯堡,萨。“通过使用119snMössbauer光谱法的Sn-Base A15超导体的晶格动力学”。奖学金和科学输出NRF评估和评级:B2(截至2023年1月)研究兴趣实验性凝分物理物理。57FeMössbauer效应光谱在可变的低温温度(低至1.5 K)和高压(最多1兆巴)处。高压物理学(钻石和宝石细胞,DAC和GACS)。激光光谱,XRD,电气传输和基于同步加速器的技术(XAS)。CO 2在DAC中加热。仪器物理(电子)。晶格 - 动力学,超导性,磁性,磁电(绝缘子 - 金属和旋转状态)过渡(在强相关的电子系统SCES中),材料科学。参与与应用,工业和生物分子物理学有关的许多研究项目。197 AU(Gold)Mössbauer-septrect光谱法。出版物80篇在同行评审的国际期刊中的文章,H-Index是22,〜1800引用(Scopus)。在国际会议上进行了几次邀请演讲。Google Scholar:https://scholar.google.com/citations?hl = en&user = m75pwraaaaaj学生和DOCS学生和DOCS 6博士学位论文和7个MSC论文受到监督。在国内和国际上的多个博士学位和MSC论文的外部考官。主持了几位博士后研究人员,1997年最新(英国,中国,塞内加尔,意大利语,法语,印度)。南非物理研究所的成员。国际高压科学技术协会(AIRAPT)的成员,http://www.airapt.org/顾问IUCR高压委员会,http://highpressure.iucr.iucr.org/ http://highpressure.iucr.org/正常审查物理学,物理综述,材料,物理综述,杂志,物理综述,杂志,材料,杂志,杂志,杂志,杂志,杂志,杂志,杂志,杂志,杂志应用物理学。偶尔的基础:科学,Physica-B,Europhysics Letters,Interlallics,Applied Physics Letters。
摘要:超出或推进器的产生的污染物对于光学表面和光学有效载荷至关重要,因为科学测量值,并且通常可以通过不受控制的污染来降解或危害性能。这是空间技术中的一个众所周知的问题,可以通过增长的石英晶体微量平衡来证明,作为测量材料超出质量性能数据并表征轨污染环境的解决方案。在太空中的操作需要与关键要求的兼容性,尤其是整个任务中要面对的机械和热环境。这项工作提供了基于3D打印技术的固定结构的设计,该技术旨在满足太空应用的环境特征,尤其是面对严酷的机械和热环境。已经构想了一种运动学安装,以赋予与较大温度范围的兼容性,并且它是通过有限的元素方法设计的,可以在发射阶段克服负载,并应对温度的工作范围降低到低温温度。质量,并允许对嵌入式加热器和传感器在该温度范围内的机械电阻和稳定性进行验证。此外,在随机环境中进行的机械测试以500 m/s 2的RMS加速度水平和20至2000 Hz的激发频率进行了成功。测试活动允许验证拟议的设计,并为可能的未来的飞机机会(以及船上的微型或纳米卫星)开辟了道路。此外,通过利用制造技术,拟议的设计可以实现容易的组装和安装固定系统。同时,即使是用于地面应用的小型系列生产,3D打印也提供了一种具有成本效益的解决方案,例如监测热毛库腔室中的污染物或清洁室或沉积室。
问题1 - 5。但是,有用的量子计算机将需要大量的高保真量子台和控制界面6 - 14,该界面6 - 14通过经典(通常在室温下)和量子(通常在低温温度下)域之间传递信号(图1a)。与经典处理器不同,量子cir-cuits无法粉丝和扇出数据15、16,因此面临着重要的输入 - 输出瓶颈17。尤其是,量子计算机中的每个量子都由外部电路7、9、18单独控制,这为量子系统19增加了噪声和热量。蛮力的方法来管理这些信号(VIA)每量子的使用单个组件的使用 - 限制了这些系统的缩放潜力16。最近的最新实验说明了这种挑战,该实验需要大约200个宽带电缆,45个笨重的微波循环器和室温电子设备来控制53吨的室温(参考20)。在本文中,我们报告了一种基于芯片的低温含量金属 - 氧化物 - 氧化剂(CMOS)界面系统,该系统可以生成100 mk时多个Qubits的控制脉冲。我们的方法是基于具有超低功率分离并实现量子及其对照电路之间紧密整合的CMO芯片。我们的体系结构不需要控制系统和Qubits在同一基础21上的整体整合,也不需要从室温(或4 K)到每个量子11、13的单个电气连接。相反,我们的体系结构利用芯片到芯片互连22来管理输入 - 输出瓶颈,并有可能与各种基于半导体的Qubit平台相兼容,包括基于Majorana零模式(MZMS)23,Electron Spins 24或Gatemon 24或Gatemon设备25。
热储层和KB的温度是Boltzmann的常数。虽然Bekenstein公式在科学的社区中得到了很好的接受,但对Landauer原则的反应更加细微。然而,它已成为一种基本的物理定律,其研究证明了其从第二种热力学定律和与获取信息相关的熵变化(包括量子和经典反馈系统)相关的变化[3] [3] [4]。在[5]中,兰道尔的原则的概括导致无需消耗能量的情况就增加了范围。这种见解提供了对信息处理与熵之间关系的更深入的理解,因为它强调说,擦除信息可以超出能源消耗的影响。通过以其他保守数量(例如角动量)来表达熵的增加,研究人员扩大了我们对有关信息和热动力学的基本原理的理解。这一发现增加了信息擦除概念及其在物理系统中的更广泛含义。2012年的一个重大突破涉及在处理单个数据过程中产生的微小热量的首次测量[6]。子随后的实验证实了Landauer的原理,并量化了在位过渡期间耗散的能量[7] [8]。使用量子分子磁体在低温温度下landauer擦除的性能进一步扩展了该原理在量子领域中的应用[9]。这些进步强调了擦除和高速操作的最低热力学成本[9] [10]。近年来对Landauer原则的批评浮出水面,对循环推理和缺陷的假设的担忧。然而,支持者保持其有效性,并指出了其从热力学的第二定律和信息处理的相关熵变化[11] - [16]。此外,研究探讨了逻辑和热纳米可逆性之间的联系,揭示了对计算的细微含义[17] [18]。2016年,佩鲁吉亚大学的研究人员声称观察到违反了Landauer原则[19]。但是,Laszlo Kish [20]认为它们的结果是无效的,因为它们未能解释能量耗散的主要来源 - 输入电位的电容的充电能量。总而言之,Bekenstein Bound和Landauer的原则的整合代表了我们对有关信息和能量的基本限制和原则的理解的重大进步。通过桥接插入理论,热力学和量子力学,这种整合为发现和实际应用开辟了新的途径。本章介绍了这些概念的整合,为在这个令人兴奋和有希望的领域中进行了探索和研究奠定了基础。
对二维材料中强相关物质的研究已成为探索冷凝物理物理学以及新型设备平台的设计的激动人心的前景。Moiré工程具有2D层具有层间扭曲角度,已被证明是工程电子相关性的强大工具。在魔术角扭曲的双层石墨烯中,石墨烯层之间的扭曲角1.1◦产生Moiré超晶格电位。平坦的电子带出现在费米水平上,其中各种相互作用驱动的多体量子相可以出现。在二维中研究强电子相关性的另一个途径是将本质相关的散装晶体剥落到原子极限中。2D HET-腐蚀中强相关系统的光电子响应是一种强大的探针,因为它可以洞悉这些系统中电子传输属性和基本的轻质 - 摩擦相互作用。在本文中,我们研究了两种密切相关的2D材料:MATBG和Cuprate超导体BI 2 SR 2 SR 2 CACU 2 O 8-δ(BSCCO-2212)。我们利用不同的光电技术来研究MATBG平面带中相关电子的基本特性,以及二维BSCCO-2212层的潜力,以用于量子传感中的应用。首先,我们通过其热电传输研究了MATBG平面带的电子光谱。我们使用光激发来诱导平面电子中的热梯度,从而产生电荷电流。我们报告了异常的热电学,这为在牢固相互互动的扁平带中局部和脱位的电子状态共存提供了有力的证据。接下来,我们使用频率分辨的光电固定技术研究MATBG扁平带中热载体冷却的动力学。引人注目的是,我们发现热载体可以有效地将能量放松到低温温度下。与双层石墨烯样品相反。我们提出了一种新型的MATBG中热载体的Umklapp Electron-Phonon散射机制,由MoiréSuperElstrattice潜力实现。最后,我们探索了基于超薄BSCCO-2212薄片的高t c的超导光电探测器的发展。我们制造的高质量样品在电信波长下表现出色。我们在自由空间和波导耦合器件中观察到在T = 77 K处的快速和敏感的辐射响应,以及通过非透明测量,雪崩检测机制在T = 20 K时在T = 20 K处观察到单光子敏感性。
[1] R. Lewis,U。Olofsson。轮轨界面手册,第一版。;伍德海德出版有限公司:英国剑桥,2009年。[2] O. Hajizad,A。Kumar,Z。Li,R.H。Petrov,J。Sietsma,R。Dollevoet。微观结构对铁路应用中Bainitic钢的机械性能的影响。金属,2019,9,778。[3] i.v.gorynin。结构材料是北极基础设施可靠性和环境安全的重要组成部分。北极:生态与经济学2015。卷。3,第19号,pp。82-87。(在俄语)[4] E.I.Khlusova,O.V。 sych。 为北极创造冷抗性结构材料。 历史,经验,现代状态。 创新2018。 卷。 11,第241页,pp。 85-92。 (在俄语)[5] V.R. Kuz'min,A.M。 Ishkov。 预测结构的冷阻力和设备的可操作性。 m。:Mashinostroenie,1996。 (在俄语)[6] I.S. Filatov,A.M。 ISHKOV,I.N。 Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Khlusova,O.V。sych。为北极创造冷抗性结构材料。历史,经验,现代状态。创新2018。卷。11,第241页,pp。85-92。 (在俄语)[5] V.R. Kuz'min,A.M。 Ishkov。 预测结构的冷阻力和设备的可操作性。 m。:Mashinostroenie,1996。 (在俄语)[6] I.S. Filatov,A.M。 ISHKOV,I.N。 Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。85-92。(在俄语)[5] V.R.Kuz'min,A.M。 Ishkov。 预测结构的冷阻力和设备的可操作性。 m。:Mashinostroenie,1996。 (在俄语)[6] I.S. Filatov,A.M。 ISHKOV,I.N。 Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Kuz'min,A.M。 Ishkov。预测结构的冷阻力和设备的可操作性。m。:Mashinostroenie,1996。(在俄语)[6] I.S.Filatov,A.M。 ISHKOV,I.N。 Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Filatov,A.M。 ISHKOV,I.N。Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Cherskii。改善寒冷气候条件的材料和设备的质量和可靠性的问题。Yakutsk:科学和技术信息中心,1987年。(在俄语)[7] A.K.Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Andreev,B.S。ermakov。低温设备的材料。s-petersburg:大学ITMO,2016年。(在俄语)[8] Yu.P.Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Solntsev,B.S。Ermakov,O.I。 睡觉。 ermakov。Ermakov,O.I。睡觉。ermakov。低温和低温温度的材料。S-Petersburg:Khimizdat,2008。(在俄语)[9] B.S.资源和维修低温和食品设备的钢结构。S-Petersburg:Spbgunipt,2011年。(在Russ。)[10] A.I.Rudskoi,S.G。Parshin。高强度冷和低温钢的冶金和可焊性的高级趋势。金属2021,11,1891。[11] J.-K。 Ren,Q.-Y.Chen,J。Chen,Z.-Y. 刘。 钒添加在热滚动的高MN奥氏体钢中的拉伸和低温 - 温度的夏比冲击特性中的作用。 材料科学与工程A 2021,811,141063 [12] 12 B. Kim,S.G。Lee,D.W。 Kim,Y.H。 Jo,J。Bae,S.S。Sohn,S。Lee。 添加Ni和Cu对奥氏体22mn-0.45c – 1al钢的低温 - 温度拉伸和夏比冲击特性的影响。 合金和化合物杂志2020,815,152407。 [13] C. Li,K。Li,J。Dong,J。Wang,Z。Shao。 FE-20/27MN-4AL-0.3C低磁性钢的机械行为和微观结构在房间和低温温度下。 材料科学与工程A 2021,809,140998。 [14] P.P. Poletskov,A.S。 Kuznetsova,D.YU。 Alekseev,对热卷高强度冷耐钢板产物的生产中世界一流发展的分析,其屈服强度为≥600n/mm2。 Nosov Magnitogorsk州立技术大学2020年的Vestnik。 卷。 18,第4页,pp。 32-38。 (在俄语)[15] L.M. [16] A.B.Chen,J。Chen,Z.-Y.刘。钒添加在热滚动的高MN奥氏体钢中的拉伸和低温 - 温度的夏比冲击特性中的作用。材料科学与工程A 2021,811,141063 [12] 12 B. Kim,S.G。Lee,D.W。 Kim,Y.H。Jo,J。Bae,S.S。Sohn,S。Lee。 添加Ni和Cu对奥氏体22mn-0.45c – 1al钢的低温 - 温度拉伸和夏比冲击特性的影响。 合金和化合物杂志2020,815,152407。 [13] C. Li,K。Li,J。Dong,J。Wang,Z。Shao。 FE-20/27MN-4AL-0.3C低磁性钢的机械行为和微观结构在房间和低温温度下。 材料科学与工程A 2021,809,140998。 [14] P.P. Poletskov,A.S。 Kuznetsova,D.YU。 Alekseev,对热卷高强度冷耐钢板产物的生产中世界一流发展的分析,其屈服强度为≥600n/mm2。 Nosov Magnitogorsk州立技术大学2020年的Vestnik。 卷。 18,第4页,pp。 32-38。 (在俄语)[15] L.M. [16] A.B.Jo,J。Bae,S.S。Sohn,S。Lee。添加Ni和Cu对奥氏体22mn-0.45c – 1al钢的低温 - 温度拉伸和夏比冲击特性的影响。合金和化合物杂志2020,815,152407。[13] C. Li,K。Li,J。Dong,J。Wang,Z。Shao。FE-20/27MN-4AL-0.3C低磁性钢的机械行为和微观结构在房间和低温温度下。材料科学与工程A 2021,809,140998。[14] P.P.Poletskov,A.S。 Kuznetsova,D.YU。 Alekseev,对热卷高强度冷耐钢板产物的生产中世界一流发展的分析,其屈服强度为≥600n/mm2。 Nosov Magnitogorsk州立技术大学2020年的Vestnik。 卷。 18,第4页,pp。 32-38。 (在俄语)[15] L.M. [16] A.B.Poletskov,A.S。 Kuznetsova,D.YU。Alekseev,对热卷高强度冷耐钢板产物的生产中世界一流发展的分析,其屈服强度为≥600n/mm2。Nosov Magnitogorsk州立技术大学2020年的Vestnik。卷。18,第4页,pp。32-38。(在俄语)[15] L.M.[16] A.B.Roncery,S。Weber,W。Theisen。 焊接塑料钢的焊接。 Scripta Metitialia 2012,66,997–1001。 Pereira,R.O。 桑托斯,学士学位 Carvalho,M.C。 Butuc,G。Vincze,L.P。Moreira。 评估第三代高强度钢的激光焊接性。 金属2019,9,1051。 [17] J. Verma,R.V。 太极拳。 焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。 制造过程杂志2017,25,134–152。 [18] C.K.H. Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Roncery,S。Weber,W。Theisen。焊接塑料钢的焊接。Scripta Metitialia 2012,66,997–1001。Pereira,R.O。 桑托斯,学士学位 Carvalho,M.C。 Butuc,G。Vincze,L.P。Moreira。 评估第三代高强度钢的激光焊接性。 金属2019,9,1051。 [17] J. Verma,R.V。 太极拳。 焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。 制造过程杂志2017,25,134–152。 [18] C.K.H. Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Pereira,R.O。桑托斯,学士学位Carvalho,M.C。 Butuc,G。Vincze,L.P。Moreira。 评估第三代高强度钢的激光焊接性。 金属2019,9,1051。 [17] J. Verma,R.V。 太极拳。 焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。 制造过程杂志2017,25,134–152。 [18] C.K.H. Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Carvalho,M.C。Butuc,G。Vincze,L.P。Moreira。 评估第三代高强度钢的激光焊接性。 金属2019,9,1051。 [17] J. Verma,R.V。 太极拳。 焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。 制造过程杂志2017,25,134–152。 [18] C.K.H. Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Butuc,G。Vincze,L.P。Moreira。评估第三代高强度钢的激光焊接性。金属2019,9,1051。[17] J. Verma,R.V。太极拳。焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。制造过程杂志2017,25,134–152。[18] C.K.H.Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Martin-root。复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。[19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。修饰的复合相钢的双点激光焊接。金属材料档案2016,第1卷。61,pp。1999–2008。[20] V.I.Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Gorynin,M.I。Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Olenin。改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。(在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。通过选择性激光熔化制造的316L不锈钢的低温机械性能。材料科学与工程A 2021,815,141317。[22] M. Morawiec,A。Grajcar。应用工程信2017,第1卷。2,pp。多相钢对汽车行业的焊接性的冶金方面。38–42。[23] J. Chen,Z.-Y.刘。低碳5MN – 5NI钢的强度和低温冲击韧性的结合。合金和化合物杂志2020,837,155484。[24] H. Wang,L。Meng,Q。Luo,C。Sun,G。Li,X。Wan。通过焊接热循环的高MN奥氏体钢的高温韧性:晶界演化的作用。材料科学与工程A 2020,第1卷。788,139573。[25] J.C. Lippold,D.J。Kotecki。 焊接冶金和不锈钢的焊接性,第一版。 ;威利:美国新泽西州霍博肯,2005年[26] A. Kalhor,M。Soleimani,H。Mirzadeh,V。Uthaisangsuk。 对双相钢的机械和腐蚀特性的最新进展综述。 民用机械工程档案2020,第1卷。 20,85。 [27] T. Nanda,V。Singh,V。Singh,A。Chakraborty,S。Sharma。 高级高强度钢的第三代:处理路线和属性。 机械工程机构的会议记录,第L部分:材料杂志:设计与应用2016,第1卷。 233,pp。 209–238。 [28] H.L. Groth,J。Pilhagen,R。Vishnu,J.Y。 琼森。 在低温下使用双链不锈钢。 提出韧性温度厚度数据的新方法。 在2017年9月18日至19日,英国伦敦的第五届国际不锈钢国际专家研讨会论文集; pp。 1–8。Kotecki。焊接冶金和不锈钢的焊接性,第一版。;威利:美国新泽西州霍博肯,2005年[26] A. Kalhor,M。Soleimani,H。Mirzadeh,V。Uthaisangsuk。对双相钢的机械和腐蚀特性的最新进展综述。民用机械工程档案2020,第1卷。20,85。[27] T. Nanda,V。Singh,V。Singh,A。Chakraborty,S。Sharma。高级高强度钢的第三代:处理路线和属性。机械工程机构的会议记录,第L部分:材料杂志:设计与应用2016,第1卷。233,pp。209–238。[28] H.L.Groth,J。Pilhagen,R。Vishnu,J.Y。 琼森。 在低温下使用双链不锈钢。 提出韧性温度厚度数据的新方法。 在2017年9月18日至19日,英国伦敦的第五届国际不锈钢国际专家研讨会论文集; pp。 1–8。Groth,J。Pilhagen,R。Vishnu,J.Y。琼森。在低温下使用双链不锈钢。提出韧性温度厚度数据的新方法。在2017年9月18日至19日,英国伦敦的第五届国际不锈钢国际专家研讨会论文集; pp。1–8。[29] N. Fonstein。高级高强度板钢;施普林格:柏林/海德堡,德国,2015年; pp。193–195。[30] M.Y.demeri。高级高强度钢。科学,技术和应用; ASM国际:俄亥俄州材料公园,