心电图是一种非侵入性检查,用于获取有关心脏电生理的信息,包括心率和心律。它表示心脏在去极化和复极化过程中的电活动,记录在体表的电极上,使病理定位到心脏的特定区域。心电图仍然被视为黄金标准检查,通常是对有心脏病风险、开始服用抗精神病药物、监测 QTC 间隔、可能需要快速镇静(伯明翰和索利哈尔精神健康基金会信托政策,2023 年)或先前诊断出心脏病或有心脏事件风险的服务用户进行的第一项诊断测试。便携性、低成本和易于操作意味着各种人员可以在整个信托机构的多个临床地点(包括诊所和住院环境)快速轻松地记录心电图。该政策提供指导,以确保心电图按照国家推荐的共识指南进行,确保信托机构和监狱所有部门的一致性。 (Osipov、Behzadi、Kane、Petrides 和 Clifford,2015 年)(NICE,2023 年)(NICE,2010 年)(NICE,2008 年) 1.2. 范围
有人提出,皮质振荡通过神经同步机制在语音和音乐感知、注意力选择和工作记忆中发挥功能性作用。神经同步的一个常被忽视的特性是,它对持续振荡的调节作用比节奏刺激更持久。我们通过在被动感知范式中研究旋律刺激期间和之后皮质神经振荡来测试这种现象的存在。旋律由嵌入在 2.5 Hz 流中的 60 和 80 Hz 音调组成。通过对男性和女性的颅内和体表记录,我们发现,在响应音调时,整个皮质(远远超出了听觉区域)的高 c 波段都出现了持续的振荡活动。相比之下,在响应 2.5 Hz 流时,未观察到任何频带的持续活动。我们进一步表明,我们的数据可以通过阻尼谐振子模型很好地捕获,并且可以分为三类神经动力学,具有不同的阻尼特性和特征频率。该模型为人类皮层中听觉神经同步的频率选择性提供了机械和定量解释。
Powassan病毒(POWV)感染是美国和北美的一种新兴传染病。像寨卡病毒一样,Powv是Flaviviridae家族的成员。POWV会导致严重的神经系统症状,脑膜炎,脑炎,并可能导致死亡。尽管人类POWV感染的风险很低,但在过去16年中在美国发病率增加了300%以上,敦促立即关注。尽管疾病的严重程度及其越来越多的威胁人口的潜力,但目前尚无许可疫苗可保护POWV。我们通过关注POWV前膜和包膜(PRMENV)基因的保守部分,开发了一种称为POWV-SEV的新型合成DNA疫苗。对POWV-SEV的单一免疫产生了与其他黄素的交叉反应性最小的小鼠中的宽T和B细胞免疫。抗体表位图显示了POWV-SEV诱导的免疫反应与在POWV感染的患者中自然引起的反应之间的相似性。最后,在致命挑战实验中,POWV-SEV诱导的免疫力为POWV疾病提供了保护。
回顾过去的 1000 年,我们发现红外 (IR) 辐射本身直到 200 年前才为人所知,当时赫歇尔首次报告了温度计实验 [1]。他建造了一个粗糙的单色仪,使用温度计作为探测器,以便测量阳光中的能量分布。继基尔霍夫、斯蒂芬、玻尔兹曼、维恩和瑞利的工作之后,马克斯·普朗克以著名的普朗克定律进一步推动了这一努力。传统上,红外技术与控制功能和夜视问题有关,早期应用仅与红外辐射检测有关,后来通过形成温度和发射率差异的红外图像(识别和监视系统、坦克瞄准系统、反坦克导弹、空对空导弹)。第二次世界大战期间见证了现代红外技术的起源。近五十年来,高性能红外探测器的成功开发使得红外技术在遥感问题上的应用取得了成功。大部分资金用于满足军事需求,但和平应用不断增加,特别是在二十世纪最后十年。这些包括医疗、工业、地球资源和节能应用。医疗应用包括热成像,其中对身体进行红外扫描可以检测出癌症或其他创伤,从而提高体表温度。地球资源测定
摘要 — 心脏数字孪生 (CDT) 是用于理解复杂心脏机制的个性化虚拟表示。CDT 开发的一个关键部分是解决 ECG 逆问题,这使得能够从体表 ECG 数据中重建心脏源并估计患者特定的电生理 (EP) 参数。尽管存在复杂的心脏解剖结构、嘈杂的 ECG 数据和逆问题的病态性质等挑战,但计算方法的最新进展极大地提高了 ECG 逆推理的准确性和效率,增强了 CDT 的保真度。本文旨在全面回顾解决 ECG 逆问题的方法、它们的验证策略、它们的临床应用及其未来前景。对于方法,我们大致将最先进的方法分为两类:确定性方法和概率方法,包括传统技术和基于深度学习的技术。将物理定律与深度学习模型相结合具有良好的前景,但诸如准确捕捉动态电生理学、获取准确的领域知识以及量化预测不确定性等挑战仍然存在。将模型集成到临床工作流程中,同时确保医疗专业人员的可解释性和可用性至关重要。克服这些挑战将推动 CDT 的进一步研究。
为了更好地了解液体抑制剂在杂乱空间中输送的物理过程,在未加热和加热的圆柱体以及体心立方体 (BCC) 球体排列的液滴载满、网格生成的均匀湍流中进行了粒子图像测速 (PIV) 测量。在这些障碍物的上游和下游表征了水滴和气溶胶颗粒的输送。记录了圆柱体在环境温度和高温(423 K)下的数据,以估计热圆柱体表面对液滴输送的影响。结果表明,较小的液滴被夹带进入圆柱体后面的再循环区域,而较大的液滴撞击圆柱体表面、积聚和滴落,和/或从表面反弹并分散到自由流中。流过加热圆柱体的流体导致在再循环区和自由流之间的剪切区域中圆柱体下游侧形成蒸汽层。因此,撞击加热圆柱体表面的较大液滴的蒸发表明蒸汽的概率增加。对于 BCC(阻塞率约为 64%),液滴和种子颗粒在 BCC 周围和通过 BCC 进行传输,并且液体积聚和滴落明显多于圆柱体。由 Elsevier Ltd. 出版。
本研究之前的证据 心脏性猝死 (SCD) 和恶性室性心律失常 (VA) 是全球主要的公共卫生问题。尽管已经确定了 SCD 和恶性 VA 的危险因素(例如左心室射血分数 ≤ 35%),但大多数事件发生在没有任何危险因素的个体中。目前,尚无有效的筛查工具来识别 SCD 或恶性 VA 的高危人群。人工智能 (AI) 的出现以及使用体表心电图 (ECG)、心脏内设备和可穿戴传感器非侵入性获得的电生理信号的日益普及,可以促进对 SCD 和恶性 VA 的个性化预测。我们搜索了 MEDLINE (Ovid)、EMBASE (Ovid)、Scopus、Web of Science 和 Cochrane Library Databases 电子数据库,以查找 2021 年 8 月之前发表的研究,这些研究开发了机器学习 (ML) 或深度学习 (DL) 模型,用于使用电生理信号预测恶性 VA 或 SCD。我们发现单个 ML 和 DL 模型的预测性能通常很高,尤其是从公开数据集中得出的 ML 和 DL 模型具有更高的准确性。然而,这些研究的特点是
我们提出了一种用于集成到脑植入式生物遥测系统中的蛇形三波段平面倒置 F 天线 (PIFA)。其目标应用包括无线数据通信、远场无线功率传输以及在医疗设备无线电通信服务 (MedRadio) 频段 (401–406 MHz) 和工业、科学和医疗 (ISM) 频段 (902–928 MHz 和 2400–2483.5 MHz) 的睡眠/唤醒模式之间的切换控制。通过在辐射器中嵌入蛇形槽并将其短接至地,我们将天线尺寸缩小到 11 × 20.5 × 1.8 mm3 的体积。我们使用全波电磁场模拟的 7 层数值人体头部模型优化了天线。在模拟中,我们将植入物放入脑脊液 (CSF) 中,深度为距体表 13.25 毫米,这比大多数植入式天线的深度要深。我们在液体模型中制造并测试了天线,并在模拟器中复制了该模型以进行进一步比较。天线的测量增益分别在 402 MHz、902 MHz 和 2400 MHz 下达到最先进的值 - 43.6 dBi、- 25.8 dBi 和 - 20.1 dBi。
背景:细胞间融合正在成为各种癌症类型转移过程的关键要素。我们最近发现,由恶性前期(IMR90 E6E7,即 E6E7)和恶性(IMR90 E6E7 RST,即 RST)间充质细胞自发融合而产生的杂交体重现了人类未分化多形性肉瘤 (UPS) 的主要特征,具有高度重排的基因组和增强的扩散能力。为了更好地描述这些杂交体的内在特性,我们在此研究了它们与亲本相比的代谢能量特征。结果:我们的研究结果表明,杂交体具有类似瓦尔堡的代谢,就像它们的 RST 对应物一样。然而,杂交体表现出更大的代谢活性,增强了糖酵解以增殖。有趣的是,通过使用 5-氨基咪唑-4-羧酰胺-1- β -D-呋喃核苷 (AICAR)(一种 5 ′-腺苷酸 (AMP) 活化蛋白激酶 (AMPK) 的激活剂)改变代谢环境条件,特异性地降低了杂交瘤的生长,并且还消除了表现出增强糖酵解的杂交瘤的侵袭能力。此外,AICAR 可有效阻断与人类 UPS 细胞系侵袭性相关的肿瘤特征。
回顾过去的 1000 年,我们会发现红外 (IR) 辐射本身直到 200 年前才为人所知,当时赫歇尔首次报告了温度计实验 [1]。他建造了一个粗糙的单色仪,使用温度计作为探测器,以便测量阳光中的能量分布。继基尔霍夫、斯蒂芬、玻尔兹曼、维恩和瑞利的工作之后,马克斯·普朗克以著名的普朗克定律进一步推动了这一努力。传统上,红外技术与控制功能和夜视问题有关,早期应用仅与红外辐射检测有关,后来通过形成温度和发射率差异的红外图像(识别和监视系统、坦克瞄准系统、反坦克导弹、空对空导弹)。第二次世界大战期间见证了现代红外技术的起源。近五十年来,高性能红外探测器的成功开发使得红外技术在遥感问题上的应用取得了成功。大部分资金用于满足军事需求,但和平应用不断增加,特别是在二十世纪最后十年。这些应用包括医疗、工业、地球资源和节能应用。医疗应用包括热成像,其中对身体进行红外扫描可以检测出癌症或其他创伤,从而提高体表温度。地球资源测定是通过使用卫星的红外图像以及