1卡诺州立尼日利亚热带健康科学与技术学院分配学位。2验光系,盟军健康科学学院,卡诺尼日利亚贝罗大学。3尼日利亚苏美拉市Al-Istiqamah大学医学实验室科学系。4农业,科学技术学院动物健康系,尼日利亚塔拉巴州贾林戈。5 Aminu Dabo卫生科学学院牙科健康科学系,卡诺州立尼日利亚。 6 Aminu Dabo卫生科学与技术学院的分发视角系,卡诺州立尼日利亚。 7天然与药学学院微生物学系,贝耶罗大学卡诺·尼日利亚大学。 8吉伐瓦尼日利亚联邦大学杜德大学微生物与生物技术系。5 Aminu Dabo卫生科学学院牙科健康科学系,卡诺州立尼日利亚。6 Aminu Dabo卫生科学与技术学院的分发视角系,卡诺州立尼日利亚。7天然与药学学院微生物学系,贝耶罗大学卡诺·尼日利亚大学。 8吉伐瓦尼日利亚联邦大学杜德大学微生物与生物技术系。7天然与药学学院微生物学系,贝耶罗大学卡诺·尼日利亚大学。8吉伐瓦尼日利亚联邦大学杜德大学微生物与生物技术系。
生物学功能是相互作用的遗传因素的复杂净作品或胸部的胸部。预测相互作用的景观仍然是系统生物学的挑战和新的研究工具,允许模拟和快速映射序列的功能。在这里,我们描述了CRI-SPA,这是一种从CRI-SPA供体菌株转移到酿酒酵母大型库中的阵列菌株的方法。Cri-Spa基于交配,CRI SPR-CAS9诱导的基因转化率和S peleptive poiidy a Blation。CRI-SPA可以与自动化大规模平行,并且可以在一周内执行。我们通过将四个基因转移到酵母敲除收集的每个菌株中(≈4800菌株)来证明CRI-SPA的功能。使用此设置,我们表明CRI-SPA具有高度有效且可重复的,并且遗传特征的无标记转移。此外,我们通过表明它们的表型与Re ver se遗传性工程重现的相应突变菌株的表型相结合来验证一组CRI-SPA命中。因此,我们的结果概述了Betaxanthin生产的遗传要求的全基因组概述。我们设想,CRI-SPA提供的简单性,速度和可靠性将使它成为对生物过程的系统级别理解的verile工具。
摘要 - 我们建议使用光子晶体表面发射激光器(PC-SELS)提出并演示自由空间光学(FSO)。与其他类型的常规半导体激光器不同,例如伸向边缘激光器(EEL)和垂直腔表面发射激光器(VCSEL),PCSELS,PCSELS在同一时间内实现了更大的区域单模式相干激光,并且这种独特的功能具有高功率(> WATT)和无镜头的操作。迄今为止,这些优点已被认为正在改变游戏,尤其是在光检测和范围(LIDAR)和激光处理应用程序中。在这项工作中,我们表明FSO通信也可以从PCSEL的这些优势中受益;更具体地,包括低功率半导体激光器,光学镜头和基于纤维的放大器的传统发射器可以用单个PCSEL代替。由于纤维放大器通常由笨重的组件组成,并且转化率较低,因此PCSEL可以提供更多的空间和节能解决方案。此外,直接从大区块单模PCSEL获得的窄光束发散角还可以消除发射机侧透镜系统的需求。为了实验验证这些潜在的优势,我们根据PCSELS进行了FSO传输实验,并使用500- m PCSEL在1.1 m上成功传输了480-MHz和864-MHz正交频次频施加频型(OFDM)信号(OFDM)信号。我们认为,PCSEL在FSO通信中打开了新的可能性和选择。
摘要背景转移性非小细胞肺癌的治疗模式越来越多地基于生物标志物驱动的疗法,其中最常见的改变是表皮生长因子受体 (EGFR) 的突变。此类生物标志物表达的变化可能会对所选靶向治疗的选择和疗效产生深远影响,因此本研究的目的是分析肺癌脑转移 (LCBM) 患者的 EGFR 状态不一致。方法使用 PRISMA 指南,对 Medline 数据库中 2020 年 5 月之前发表的活检或切除的 LCBM 系列进行系统评价。关键词包括“肺癌”和“脑转移”结合“表皮生长因子受体/EGFR”和“受体转换/不一致或一致”。使用加权随机效应模型计算汇总估计值。结果我们从 19 篇全文文章中确定了 501 名患者纳入本研究。所有患者均接受了至少一处颅内病变的活检或切除术,以与原发肿瘤进行比较。在原发肿瘤/LCBM 比较中,整体 EGFR 受体不一致的加权汇总估计值为 10%(95% CI 5-17%)。加权效应模型估计,在原发肿瘤阴性的患者中,脑转移瘤中 EGFR 突变的增加率为 7%(95% CI 4-12%)。或者,在原发肿瘤中检测到突变的患者中,EGFR 突变的丢失率为 7%(95% CI 4-10%)。在 148 名患者的子集中,还对原发肿瘤和 LCBM 进行了 KRAS 检测。与原发肿瘤相比,LCBM 中 KRAS 突变不一致的加权效应估计值为 13%(95% CI 5-27%)。 LCBM 中 KRAS 增加和损失的加权效应估计分别为 10%(95% CI 6–18%)和 8%(95% CI 4–15%)。元回归分析未发现与任何可能与不一致相关的因素有任何关联。结论原发性肿瘤和 LCBM 之间的 EGFR 和 KRAS 突变状态不一致分别发生在约 10% 和 13% 的患者中。评估 LCBM 受体状态是生物标志物驱动的颅内疾病靶向治疗的关键,而对于仅接受颅内疾病全身治疗的患者,了解亚型转换至关重要。
1 Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia, 2 Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States, 3 Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia, 4 School of Biosciences, Faculty of Health and Medical Sciences, Taylor ' s University Lakeside Campus, Subang Jaya, Selangor, Malaysia, 5 Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia, 6 School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih,雪兰莪,马来西亚
嘌呤能信号传导参与控制与大脑发育有关的几个过程,例如神经发生和神经胶质生成、神经元前体的迁移和分化、突触形成和突触消除,以实现完全连接和高效的成熟大脑。因此,任何由特定腺苷和嘌呤能受体亚型(P1、P2X 或 P2Y)刺激介导的嘌呤依赖性信号传导失调都可能导致功能缺陷和神经精神疾病的发展,包括自闭症谱系障碍 (ASD)。在本研究中,我们在 ASD 动物模型中研究了大鼠大脑发育过程中所选嘌呤能受体的表达和活性变化。怀孕母鼠在胚胎第 12.5 天(ED)神经管闭合时接受腹膜内注射丙戊酸 (VPA;450 mg/kg 体重)。随后,分析了在 ED19(大脑发育的重要产前阶段)特定嘌呤受体亚型的表达和活性变化。我们的研究结果表明,产前 VPA 暴露会导致参与调节祖细胞增殖和神经生长的腺苷受体 A1、A2b 和 A3 的水平和活性显著增加,以及嘌呤能 P2X2/P2X3 受体上调,这反过来可能导致出生后的神经解剖异常和突触功能障碍。相反,P2Y1 和 P2X7 受体的显著下调,以及它们在胚胎 VPA 大脑中的活性降低,可能表明神经元前体迁移和分化、树突和轴突形成以及谷氨酸/GABA 失衡的过程受到干扰,从而改变神经元的兴奋性。总之,产前 VPA 暴露引起的嘌呤能信号缺陷可能对胚胎发育期间的大脑发育以及出生后的智力和行为功能产生深远影响。这些观察结果可为未来实施 ASD 的潜在治疗策略提供线索。
使用已发表的临床前数据评估了人类肿瘤 - Xenograpt小鼠模型中有效剂量的相关性与批准肿瘤学剂的人类临床剂量之间的相关性。对于90个批准的小分子抗癌药物,身体表面积(BSA)校正的小鼠有效剂量有力地预测了人类临床剂量范围,其中85.6%的预测占建议的临床剂量的3倍(3倍),而在2××内的预测范围为63.3%。这些结果表明,BSA转化是一种有用的工具,用于从早期发现阶段从小鼠异种移植模型中估算小分子肿瘤剂的人剂量。然而,基于BSA的剂量转化率很差预测静脉内抗体和抗体药物结合抗癌药物。基于抗体的药物,预测剂量的30(16.7%)中的五个(16.7%)在推荐的临床剂量的3倍以内。基于体重的剂量投影是适度预测的,其中66.7%的药物在推荐的临床剂量的3倍以内预测。在ADC中,相关性稍好一些(3倍为77.7%)。在早期发现阶段和临床试验的设计中,此类简单剂量估计方法的应用和局限性在此回顾性分析中也进行了讨论。
目的:关于单侧脑损伤对不同身体表征(身体图式、身体结构表征和身体语义)影响的系统研究仍然很少。本研究的目的是评估相对较大的单侧脑损伤患者样本中的身体表征缺陷,并研究右脑或左脑损伤对身体表征 (BR) 的影响,独立于其他认知过程的缺陷。方法:64 名单侧中风患者(22 名患有左脑损伤,LBD;31 名患有无忽视的右脑损伤,RBD-N;11 名患有忽视的右脑损伤,RBD + N)和 41 名健康个体接受了包括 BR 和控制任务的特定测试。结果:在超过三分之一的样本中,出现选择性(37.5%)和纯粹(31%)的 BR 缺陷,并均匀分布在不同的 BR 中(每个表征约 10%),选择性(27.2%)和纯粹(22.7%)身体图式缺陷主要出现在左脑损伤后。作为一个群体,单侧脑损伤患者(无论损伤侧如何,LBD、RBD-N、RBD + N)在身体结构表征方面的表现明显差于健康个体,而 LBD 在身体图式方面的表现在数值上比健康个体和 RBD-N 更差。在身体语义方面,各组之间没有发现显著差异。结论:BR 缺陷并不是单侧脑损伤的罕见后果,并且与更普遍的认知功能障碍无关。因此,讨论了在临床环境中进行准确评估和特定神经心理学培训的必要性。
摘要背景:受自然界的启发,仿生方法已被用于癌症靶向化疗的药物纳米载体。纳米载体被细胞膜包裹,这使它们能够结合天然细胞的功能。综述的关键科学概念:表面用细胞膜改造的纳米载体已成为癌症靶向化疗的迷人材料来源。细胞膜包覆纳米载体 (CMCN) 的一个显着特征是它们除了具有生物相容性外,还包含碳水化合物、蛋白质和脂质。CMCN 能够与肿瘤复杂的生物环境相互作用,因为它们包含其母细胞的信号网络和内在功能。已经研究了许多细胞膜,目的是用膜掩盖纳米载体,并且已经设计出各种肿瘤靶向方法来改善癌症靶向化疗。此外,来自不同细胞来源的膜的多样化结构拓宽了 CMCN 的范围,并提供了一类全新的药物输送系统。综述目的:本综述将描述 CMCN 的制造工艺和不同类型的细胞膜包覆纳米载体药物输送系统的治疗用途,以及解决障碍和未来前景。关键词:纳米载体、细胞膜、癌症、化疗、靶向药物输送
锝化学的进展促进了新型99mTc放射性药物的开发;另一方面,探测器技术的发展和影像设备中重建算法的进步使得SPECT的空间分辨率更接近PET,而灵敏度并没有降低[27]。这些进展为SPECT/CT技术带来了新的发展机遇。此外,纳米抗体探针的最佳成像时间也与半衰期完美一致