罗曼·M·巴耶夫斯基是一位敬业的科学家、富有同情心的医生、受人爱戴的导师和亲密的朋友,他于 2020 年 5 月 31 日以 91 岁高龄去世。他曾担任俄罗斯联邦科学中心——俄罗斯科学院生物医学问题研究所 (IBMP) 的首席研究员。在他的整个职业生涯中,他的工作重点是研究自主心血管控制机制及其在极端环境中,特别是在太空旅行期间所面临的挑战。此外,他还提出了这样一种概念,即非侵入性心血管自主神经测试可以在症状出现之前识别出高风险的个体,以指导预防措施。罗曼·M·巴耶夫斯基于 1952 年至 1957 年在萨哈林岛担任军事飞行外科医生,开始了他的科学生涯,直到他非凡的一生结束。他在航空医学方面的经验为他在太空医学领域的开创性工作奠定了坚实的基础。他是一位拥有精湛工程技能和深厚生理知识的医师科学家。 Roman M. Baevsky 是俄罗斯传奇生物控制论创始人 Parin VV 的最后一批博士生之一。此外,他还是俄罗斯空间心脏病学的共同创始人 [9]。50 多年来,他一直致力于将空间医学与地球上的临床应用相结合,为该领域做出了巨大贡献(图 1)。Roman M. Baevsky 发明并开发了第一台俄罗斯心冲击描记仪,该设备通过体表传感器获取心脏跳动产生的力。该方法要求飞行员将腿放在心冲击描记仪上,提供了
基于脂质体的疫苗代表了免疫疗法的显着进步,因为它们的多功能能力封装和呈现抗原,佐剂和靶向配体。这些脂质囊泡具有生物相容性和适应性的结构,提供了增强的免疫原性,长时间的抗原暴露和降低的反应生成性。通过封装治疗剂,脂质体可保护抗原免受降解并促进受控释放,从而提高疫苗的稳定性和功效。脂质体的表面修饰使抗原能够表现出模仿自然免疫反应的策略,从而有效地吸引了免疫细胞。此显示,结合脂质体介导的佐剂递送,通过激活树突状细胞,巨噬细胞,T细胞和B细胞来放大体液和细胞免疫。脂质体还允许多价疫苗设计,靶向多种病原体表位,这对于打击复杂的感染至关重要。先进的技术,例如共价偶联,金属授粉和脂质尾巴锚定,增强抗原表现和免疫细胞的接合。脂质体的尺寸,表面电荷和脂质结构对于确定与免疫细胞的相互作用并影响其作为疫苗辅助递送系统的作用至关重要。本评论探讨了基于脂质体的疫苗的最新创新,重点是抗原表现,免疫激活和记忆形成的机制。这些发现强调了脂质体平台作为下一代疫苗技术的潜力,能够提供稳健和持久的免疫反应。doi:https://doi.org/10.22034/mnba.2024.488511.1102©作者2024。Birkar简介LIPID微型和纳米载体吸引了
随着用于医学图像分析的人工智能 (AI) 系统的发展呈指数级增长,医院和医疗中心已开始在临床实践中部署此类工具 1 。这些系统通常由一种称为深度学习 (DL) 的特定类型的机器学习 (ML) 技术提供支持。DL 方法通过采用具有不同抽象级别的多层处理来学习复杂的数据表示,这对于解决广泛的任务很有用。在医学图像计算 (MIC) 背景下,此类任务的示例包括病理分类、解剖分割、病变描绘、图像重建、合成、配准和超分辨率等 2 。虽然与在实验室条件下应用于不同 MIC 问题的 DL 方法相关的科学出版物数量呈指数级增长,但旨在评估医疗 AI 系统的临床试验最近才开始获得发展势头。事实上,根据美国放射学会的数据,迄今为止,美国食品药品监督管理局 (FDA) 批准的与放射学和其他成像领域相关的 AI 医疗产品不到 200 种 3 。最近,机器学习公平性研究界强调,机器学习系统可能会对某些亚群体产生偏见,即它们对不同亚群体表现出不同的表现,这些亚群体由年龄、种族/民族、性别、社会经济地位等受保护属性定义 4、5 。在医疗保健领域,算法对不同人群亚群体的潜在不平等行为甚至可能被认为违背了生物伦理学原则:正义、自主、仁慈和非男性原则 6 。在这种背景下,促进 MIC 的公平性变得至关重要。然而,这绝非易事:确保机器学习部署的公平性需要解决整个设计、开发和实施过程中的多个不同方面。虽然机器学习公平性对
在癌症免疫疗法快速发展的时代,人们对刺激免疫系统的细胞释放的小囊泡的应用有很高的兴趣。作为细胞衍生的纳米层,外泌体在癌症免疫疗法中表现出巨大的希望,因为它们具有免疫原性和分子转移功能。最近已经确定了在外泌体上携带的货物,其技术进步的改进,并在调节免疫反应中起功能作用。尤其是,源自肿瘤细胞和免疫细胞的外泌体表现出独特的组成谱,直接参与抗癌免疫疗法。更重要的是,外泌体可以将其货物传递到靶细胞上,从而影响靶细胞的表型和免疫调节功能。在过去的十年中积累证据进一步表明,外泌体可以参与有助于癌症发展和治疗作用的多种细胞过程,显示了促进和抑制癌症的双重特征。外泌体在癌症免疫疗法领域的潜力很大,外泌体可能成为最有效的癌症疫苗以及靶向抗原/药物载体。了解如何在免疫治疗中使用外泌体对于控制癌症进展至关重要。此外,外泌体对诊断和新型治疗策略的发展具有影响。本综述讨论了外泌体在免疫疗法中作为携带者刺激抗癌免疫反应和免疫激活的预测标记的作用。此外,它总结了基于外泌体免疫疗法在人类癌症中的机制和临床应用前景。
在空间风化的样品中应用计算机视觉算法来自动化太阳粒子轨道分析。K. Heller 1,J。A. McFadden 1,M。S. Thompson 1。 1地球,大气和行星科学系,普渡大学,西拉斐特,47907年(mcfadde8@purdue.edu)。 简介:暴露于太阳风辐射和其他高能离子流的来源导致在太阳系上无空体表面上土壤的空间风化[1,2]。 尤其是,太阳能耀斑的太阳能颗粒(SEP)对晶粒的辐照,可以将毫米穿透到地表岩石上,从而导致晶粒内部晶体结构损伤的线条。 这些SEP轨道可以通过对透射电子显微镜(TEM)中土壤样品的分析来揭示。 通过TEM图像测得的晶粒中这些SEP轨道的密度可用于基于校准的生产速率生成暴露时间表[3]。 对这些SEP轨道密度的分析可在无气体表面上的太空风化和太阳辐射过程以及雷果石混合和重新加工时间表上产生宝贵的见解。 直到最近,对TEM图像中的SEP轨道的识别和分析主要是手工执行的,这是一种耗时的实践。 但是,机器学习领域(ML)和计算机视觉领域的进步使机器的视觉能力能够通过适当的神经网络设计和培训数据匹配和超越人类的能力[4,5,6]。 这两个模型在结构上是相同的,但在培训数据上却有所不同。A. McFadden 1,M。S. Thompson 1。1地球,大气和行星科学系,普渡大学,西拉斐特,47907年(mcfadde8@purdue.edu)。简介:暴露于太阳风辐射和其他高能离子流的来源导致在太阳系上无空体表面上土壤的空间风化[1,2]。尤其是,太阳能耀斑的太阳能颗粒(SEP)对晶粒的辐照,可以将毫米穿透到地表岩石上,从而导致晶粒内部晶体结构损伤的线条。这些SEP轨道可以通过对透射电子显微镜(TEM)中土壤样品的分析来揭示。通过TEM图像测得的晶粒中这些SEP轨道的密度可用于基于校准的生产速率生成暴露时间表[3]。对这些SEP轨道密度的分析可在无气体表面上的太空风化和太阳辐射过程以及雷果石混合和重新加工时间表上产生宝贵的见解。直到最近,对TEM图像中的SEP轨道的识别和分析主要是手工执行的,这是一种耗时的实践。但是,机器学习领域(ML)和计算机视觉领域的进步使机器的视觉能力能够通过适当的神经网络设计和培训数据匹配和超越人类的能力[4,5,6]。这两个模型在结构上是相同的,但在培训数据上却有所不同。在这里,我们应用这些ML技术来开发一个原型自动化程序,该程序可以自动检测和分析TEM图像中的SEP轨道,从而使未知样本中的SEP轨道更有效,更准确地注释。方法:机器智能程序(“模型”)旨在查找和计算提供的TEM图像中的所有SEP轨道,包括潜在的微弱或“隐形”轨道。由于轨迹而言,由于主要是与背景材料不同的强度线段的线段,该模型旨在识别线性强度差异的区域。两种单独的型号经过训练以提高性能 - 一种在较暗的背景(LOD)上搜索较轻的曲目,而一种搜索较轻的背景(DOL)上的较暗轨道(DOL)。拆分模型的决定在很大程度上旨在改善训练时间和模型性能,因为示例往往由LOD或DOL轨道组成。因此,将模型拆分可改善训练时间并减少处理时间,因为训练集和应用的差异减少为更简单,较小的模型提供了空间。此外,这使该模型可以应用于两种不同类型的扫描TEM(STEM)成像模式:深色场(DF),其中SEP轨道显得比周围的晶体更明亮,而明亮场(BF),其中SEP轨道显得比周围的晶体更暗。由于计算机以抽象的结构可视化数据,分析是按像素度量进行的,而不是与测量相关的
尽管人工智能 (AI) 作为一门学科已成立 60 多年,但由于计算机技术的进步、机器学习算法的改进、图形处理单元通用计算的发展、大数据访问的增加以及云计算的兴起等诸多原因,人工智能在二十一世纪的前二十年取得了迅速发展。人工智能已被用于解决生活中各个方面的各种挑战性问题,例如商业、教育、安全、医学(Topol,2019 年;Rajpurkar 等人,2022 年)以及本合集感兴趣的人体生理学。本合集的目的是广泛介绍人工智能应用于人体生理学各种生物系统,特别是心血管、呼吸和内分泌系统所取得的最新进展。四篇文章极大地展示了人工智能在解决先前已知的心血管系统诊断局限性方面的应用。在缺血性心肌病领域,Zhao 等人。提出了几种基于支持向量机的模型,使用计算出的样本熵、心电图 (ECG) 和心向量图的 ST-T 段的空间异质性指数和时间异质性指数作为输入特征,组合模型作为检测心肌缺血的非侵入性工具具有最佳分类器性能。在将人工智能应用于结构性心脏病的解释时,Bailoor 等人使用基于心音主成分和瓣膜状态的健康和狭窄主动脉瓣的“声学特征”训练了线性判别分类器,以检测主动脉瓣异常。在心电图诊断和心律失常解释的道路上,Brisk 等人展示了波分割如何成为一种有用的心电图表示学习形式,从而提高模型在下游任务上的性能。最后,Cámara-Vázquez 等人讨论了深度卷积神经网络和体表电位映射在确定心房颤动患者消融目标区域方面的潜力。
研究超声速气流作用下复合材料层合板的气动弹性失稳问题,通过求解气动弹性特性的广义特征值问题进行分析。通常通过计算不同来流速度下层合结构的固有频率,得到层合板在气流作用下的临界失稳速度,这是由于层合结构刚度减小,导致结构失稳。应根据复合材料壁板所处的力学环境合理设计结构参数,避免在气流作用下出现结构失稳问题。活塞理论最初由Lighthill在Hayes对Tsien高超声速相似理论的扩展基础上发展起来。在壁板颤振研究中,为了更好地模拟实际的气动变化过程,许多研究者提出了各种气动计算模型,但这些气动模型的不足之处在于考虑了较为复杂的边界条件,因此方程的求解过程相当复杂。在结构力学的框架下,利用二维模型,利用活塞理论推导了能够预报超声速范围内先进结构壁板颤振的精细气动弹性模型。活塞理论被广泛应用于许多气动模型,它提供了体表某点处表面下洗流与气动压力之间的准定常点函数关系。这使得活塞理论成为一种计算成本低廉的空气动力学模型。在本论文中,CUF工具的高效性允许推导任意阶模型,Carrera统一公式允许使用紧凑统一的公式推导任何模型。强形式解和提出的CUF模型的有限元近似。本文推导了二维模型的FEM特征矩阵,基本核允许使用自动程序推导矩阵。有限元法(FEM)由于其多功能性和数值效率而仍然值得关注。已经解决了力学的各种问题,包括静态,自由振动和动态响应问题。通过求解气动弹性特性的广义特征值问题对其进行分析,并考虑了许多参数来研究它们对颤振边界的影响。关键词:有限元方法、活塞理论、气动弹性不稳定性、气动弹性、Carrera 统一公式、超音速、复合层压板。
注释简介。骨缺损的恢复是患者治疗和康复的关键阶段,但对于骨科创伤学家来说,这仍然是一项艰巨的任务。对组织工程方法的需求是由于人体能力有限,骨骼组织的自动化是有限的,尤其是在合并症和老年患者骨组织中。在大多数情况下,骨骼自动植物的使用仍然存在,这与某些限制有关。再生医学的发展和干细胞生物学的研究发现了使用新方法刺激骨组织的可能性。研究人员的特殊兴趣集中在使用中层干细胞及其细胞外囊泡作为优化骨组织再生的策略上。这项工作的目的是基于文学数据,以介绍间充质一百个细胞和exosos在骨缺损治疗中的有效性。材料和方法。在准备审查时,使用了PubMed科学文献和电子图书馆电子库的电子数据库。搜索文学数据是根据关键词进行的:再生医学,骨缺损,外泌体,介体表,再生医学,骨缺损,外泌体,间充质干细胞。结果和讨论。列出了有关间充质干细胞,它们的微侵蚀和外Xosos对骨组织恢复过程的当代数据。结论。有效骨再生的临床需求仍处于高水平。使用间充质干细胞和血液再生方法在恢复骨骼缺陷方面表现出良好的结果,并且对该规则是一个有前途的结果。为在骨缺陷治疗中生产间充质干细胞和外sosos的生产性使用,有必要进一步研究作用机制,评估旋前和临床研究中再生技术数据的有效性和安全性。使用间充质干细胞和无血的再生方法在恢复骨缺损方面表现出良好的结果,并且是一个有前途的方向。关键字:再生医学,骨缺损,细胞疗法,外泌体,介质餐桌细胞,生物发动机,组织工程
近几十年来,随着太赫兹 (THz) 光源的发展,工业和医学应用相继被提出。此外,THz 辐射对人体健康的毒性也引起了在此频率区域工作的研究人员的浓厚兴趣 1 。两个项目,欧洲 THz-BRIDGE 和 SCENIHR 的国际 EMF 项目 2 ,总结了近期有关 THz 辐射对人体影响的研究。例如,THz 波对 DNA 稳定性产生非热影响 3 – 5,这可能导致人类淋巴细胞的染色体畸变 6 。还证明了小鼠皮肤中伤口反应基因的转录激活 7 和人造人体 3D 皮肤组织模型 8 中的 DNA 损伤。大多数研究集中在上皮和角膜细胞系,因为在这个频率区域液态水的强烈吸收下,THz 光子在组织表面被完全吸收。但是,如果将 THz 辐射转换为可以传播到水中的另一种能量流,THz 波的照射可能会对组织内部造成损伤。事实上,THz 光子能量一旦被体表吸收,就会转换为热能和机械能。我们最近观察到 THz 脉冲在液态水表面产生冲击波 9 。产生的冲击波可以传播几毫米深。类似的现象也可能发生在人体上。THz 诱导的冲击波会对生物分子产生机械应力并改变其形态。THz 辐射的这种间接影响尚未被研究过。为了揭示 THz 诱导的冲击波对生物分子的影响,我们重点研究了肌动蛋白的形态。肌动蛋白有两种功能形式,单体球状 (G)-肌动蛋白和聚合丝状 (F)-肌动蛋白。肌动蛋白丝形成复杂的细胞骨架网络,在细胞形状、运动和分裂中起着至关重要的作用 10 。使用肌动蛋白的一个优点是,我们可以很容易地从组织中获得足够的纯化 G- 肌动蛋白 11 ,以重建体外聚合反应。肌动蛋白丝可以通过用硅-罗丹明 (SiR)-肌动蛋白染色直接在荧光显微镜下观察 12 。由于肌动蛋白在正常和病理细胞功能中起着关键作用,包括转录调控、DNA 修复、癌细胞转移和基因重编程 13 - 16 ,各种化合物和调节蛋白已被分析用于研究和治疗目的 17 。在这项研究中,我们调查了 THz 诱导的冲击波对肌动蛋白丝的影响
神经纤维瘤病I型(NF1)是一种常染色体显性遗传病,由位于染色体17q11.2上的神经纤维瘤1基因突变引起[1]。约50%患者有明确的家族史,其余为散发性或因放射治疗所致[2]。NF1患者患多种肿瘤的风险也增大,包括恶性周围神经鞘瘤(MPNST)、嗜铬细胞瘤、白血病、胶质瘤和横纹肌肉瘤[3]。MPNST是一种与NF1密切相关的高度恶性肿瘤。在NF1患者中,MPNST的终生风险为8%~13%[4]。NF1相关的MPNST恢复情况比散发性或放射相关性MPNST差[5]。同时,还会增加患者的经济和心理负担。因此心理负担较重的患者还应寻求心理咨询和生活帮助[6]。本文报告一例NF1相关MPNST年轻男性病例,并复习相关文献。一年前,一名26岁的年轻男性发现右大腿近端外侧有一肿块,肿块明显增大,5个月前生长加快,患者因肿瘤大、疼痛入院。该患者有NF1家族史,据患者家属介绍,患者的母亲被诊断出患有消化道多发性恶性肿瘤并因此死亡,患者死前经测序证实有NF1突变。此次,我们还对患者的2个叔叔(其母亲的2个兄弟)进行了测序,通过基因测序,发现患者的2个叔叔也存在NF1基因突变。患者的2个叔叔均表现为体表大量肿块。患者的祖父(母亲的父亲)年轻时头部出现鸡蛋大小的肿块,诊断为NF1,手术切除后未复发,在进行本研究时,他已年老无法参与研究(图1)。患者的体格检查显示脊柱侧凸,全身多发大小不等的咖啡牛奶斑,右大腿外侧有一巨大肿块,质地中等,一般活动性,肿块表面皮肤静脉明显,大小为50×33×32 cm(图2A、B)。神经系统检查未见明显症状。右大腿磁共振成像(MRI)显示一个大的软组织肿块(图3),因此怀疑为神经纤维瘤病。骨扫描显示面积略有增大