住宅建筑向清洁能源的过渡还必须确保全年供应可持续的热量。但是,虽然目前有几种激励措施用于在建筑物中安装可再生能源收集装置(例如屋顶上的太阳能电池板),但针对自产热量的举措很少,而且主要通过在太阳辐射大的地区安装太阳能集热器来利用。太阳能的可用性以及电力和热力需求常常受到时间相位变化的影响,前者在夏季和白天充足,而后者在冬季和夜间需要。所有这些现象的综合作用导致能源生产和消费之间出现严重的不匹配,从而导致电网的技术和经济运行问题。这可能导致两种同时发生的现象:夏季电力过剩,这可能导致能源价格下跌,冬季能源短缺,这可能导致能源价格上涨。此外,可能引入的重要碳税可能会导致标准燃气供暖系统成本大幅增加。4
摘要。能够缩小夏季可再生能源发电和冬季供暖需求之间季节性差距的技术对于减少能源系统的二氧化碳排放至关重要。钻孔热能存储 (BTES) 系统提供了一种有吸引力的解决方案,其正确的尺寸对于其技术经济成功至关重要。大多数 BTES 设计研究要么采用详细的建模和仿真技术,这些技术不适合数值优化,要么使用明显简化的模型,不考虑操作变量的影响。本文提出了一种 BTES 建模方法和混合整数双线性规划公式,可以考虑季节性 BTES 温度波动对其容量、热损失、最大传热速率以及连接的热泵或冷却器的效率的影响。这使我们能够准确评估其在不同温度和不同操作模式(例如 BTES 直接排放或通过热泵)下运行的不同区域供热和制冷网络中的集成性能。考虑一个在电力的二氧化碳强度随季节变化的情况下使用空气源热泵的案例研究,研究了集成 BTES 和太阳能集热器的能源系统的最佳设计和运行。优化旨在最大限度地降低能源系统的年度成本和二氧化碳排放量,该优化适用于两种供热网络温度和五种代表性碳价。结果表明,最佳 BTES 设计在尺寸和运行条件方面都发生了变化,与基于标准空气源热泵的系统相比,排放量最多可减少 43%。
乳制品行业是食品行业中增长最快的行业之一,其加工过程对热能的需求很大,温度要求最高为 200 ℃。在这些加工过程中使用太阳能将减少对化石燃料的依赖、温室气体排放、环境污染,并有助于实现排放目标。因此,本研究调查了乳制品公司的热能需求,并提供了太阳能热能系统与其加工过程之间的两种集成概念的示意图,即通过公共能源供应线和各个加工过程的入口。本研究涉及一个案例研究,该案例研究使用天然气锅炉、电力冷却器、冰库和冰箱来满足巴氏灭菌、发酵和冷藏牛奶罐等加工过程的加热和冷却能源需求。乳制品加工过程在满负荷运行时的总能耗为 1315 kWh,其中 1195 kWh 理论上可以由太阳能热能替代。加工过程的温度要求为冷却时 0 ℃ 至 4 ℃,加热时 170 ℃。这些热能需求可以通过使用槽式或线性菲涅尔太阳能集热器以及热能储存来满足。在供应层和工艺层开发的太阳能热能集成概念使用蒸汽鼓和吸收式制冷机将太阳能传输到工艺中。供应层集成具有更多优势,因为它比传统和太阳能系统更容易控制。
本文对丹麦区域供热进行了连贯的回顾,探索了过去、现在和未来的前景。丹麦区域供热在供热规划策略、技术解决方案和组合、能源效率和可持续性、所有权模式和融资方面在国际上独树一帜,从早期就吸引了世界各地区域供热社区和利益相关者的关注。从历史上看,禁止垃圾填埋场激励了垃圾焚烧,而热电联产厂的战略整合和工业废热的回收都提高了能源系统的能源效率。最终,这促使丹麦能源系统在世界能源理事会的能源三难标准排名中名列前茅。合作心态、福利国家价值观以及能源效率、可用性、独立性和可持续性的概念都是整个丹麦区域供热网络发展的关键。丹麦区域供热行业的其他独特之处包括大规模集体供热规划、强制连接、非营利原则、无论热密度如何,客户的价格大致相同,以及区域供热的平均价格相对较高。此外,区域供热知识中心还促进了区域供热技术和专门知识的全球出口。丹麦区域供热行业未来面临的挑战包括生物质进口依赖性增加、热电联产电厂在能源系统中的角色变化、向非燃烧供热的过渡以及单户住宅中单个热泵的竞争。然而,随着越来越多的可再生能源被整合到丹麦和国际能源系统中,未来的“智能”热网将日益促进行业耦合过程。
区域供热是世界上许多城市的主要能源基础设施,对温室气体排放贡献巨大。区域供热脱碳是实现碳中和社会的重要一步,需要进行重大的社会技术变革。本文以涉及社会技术重构的可持续发展转型文献为基础,研究了实施基于生物质焚烧最小化和全面淘汰化石燃料的低碳区域供热系统的障碍。从实证角度来看,该研究依赖于广泛的利益相关者分析,涉及 44 个组织,代表技术提供商、能源公司、行业组织、政策制定者、地方当局和研究人员。结果表明,虽然几个利益相关者群体可以在关键问题上达成一致,例如需要支持某些技术领域和生物质锁定的危险,但政策制定者、新进入者公司和建筑业主之间存在需要消除的障碍的分歧。城市被认为是实施拟议的低碳区域供热概念的重要参与者。然而,他们应该鼓励建筑业主参与需求响应计划、分散的可再生能源生产和重新设计当地电力网络以支持区域供热电气化。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
年温度变化:评估 20 年间隔内的平均影响有助于解释环境的变化性质。但与此同时,这种方法可能无法捕捉到具有重大经济后果的急性高温事件。例如,仅在 2020 年,凤凰城就打破了 100°F(145 天)以上天数的记录。虽然本研究没有提供特定短期事件期间的结果,但在整个分析过程中都注意保持年温度变化:温度预测基于真实历史数据的变化,对十个全球气候模型 (GCM) 1 进行了不作为成本分析以呈现一系列结果,并在所有处理结束时对时间段进行平均,以保持每日温度变化的峰值和谷值。2
我们致力于建立国家公共能源机构,以加速家庭和建筑物供暖和能源使用方式的变革。为实现这一目标,该机构的职责是提高公众的理解和认识,协调投资的实施,协调国家、地区和地方政府实施供热脱碳和能源效率推广,并与公共、私人和第三部门合作伙伴密切合作。我们将首先将该机构作为一个虚拟机构建立,然后在 2025 年 9 月之前过渡到专门机构。我们已经开始了一段时间的证据收集工作,以支持该机构范围和职责的发展。
由于全球变暖导致化石燃料的使用引起全球气候变化,大多数国家都致力于通过应用可再生能源减少温室气体排放。由于分布式和季节性供暖需求,供暖脱碳更具挑战性,特别是对于冬季寒冷的国家。电动热泵被认为是供暖行业脱碳的一个有吸引力的解决方案。由于电网供电的热泵可能会显著增加电网的电力需求,本文考虑使用本地可再生能源为热泵提供电力,这被称为电网独立的可再生供暖系统,包括光伏、风力涡轮机、电池储能系统和热能储存。本文研究了一个完整的可再生供暖系统 (RHS) 框架并确定了组件的尺寸以实现建筑供暖脱碳。分析了相应可再生组件安装容量下天然气消耗的减少与电池储能系统 (BSS) 要求之间的关系及其技术要求。然后,根据不同的投资方案,本文使用粒子群优化算法对 RHS 中每个组件进行优化尺寸计算,以找到最小化 CO 2 排放的解决方案。结果验证了具有最优尺寸的 RHS 可以最小化 CO 2 排放并降低天然气的运营成本。这项工作为如何投资 RHS 以取代现有的基于燃气锅炉和热电联产的供热系统提供了一种可行的解决方案。