在动力反应堆的整个使用寿命期间,都会对反应堆探测器信号(包括中子噪声水平)进行持续监测,因为这些信息提供了有关堆芯行为及其动态的宝贵知识。更重要的是,中子噪声监测可用于及早发现反应堆运行期间可能发生的异常。几十年来,中子噪声现象一直是深入研究的课题,为开发众多噪声监测方法、信号处理技术和分析求解器奠定了基础,这些方法至今在全球范围内广泛使用。然而,在过去十年中,在欧洲 KWU 的 Konvoi 前压水反应堆设计反应堆中观察到一种意想不到的中子噪声水平增加趋势,引起了研究和工业界越来越多的关注。这种噪声水平增加趋势当然与安全无关。然而,自出现以来,它一直给公用事业带来不良的、代价高昂的运营后果。新的观察结果表明,需要更好地了解全功率反应堆中的中子噪声行为,这是本研究的主要目标。
著名理论物理学家理查德费曼说过,量子力学的一切都可以用双缝实验来概括。在双缝实验中,你向带有两个窄缝的墙壁逐个发射光子。每个光子落在第二面墙上的哪个位置是概率性的。如果我们绘制光子在后墙上出现的位置,有些地方很有可能,有些则不然。在图 2.1 – 2.3 中,你可以看到显示基本实验设置以及使用光子进行单缝和双缝实验的结果的图表。请注意,屏幕上有些地方可能出现而有些地方不太可能出现,这本身并不是奇怪的部分:我们完全可以用某种理论来解释这一点,在这种理论中,每个光子都具有一些我们不知道的额外自由度(“RFID 标签”),这决定了它去往哪个方向。奇怪的是,对于第二面墙上的某个间隔:
本课程深入介绍量子信息科学,面向计算机科学、物理学、电子和计算机工程或相关领域的高年级本科生和研究生。由于内容先进,需要对线性代数、微积分、概率和统计学有扎实的理解。我们首先研究与信息科学相关的量子力学的基本概念,例如量子比特、叠加、纠缠和量子门。学生将学习用数学表示和操纵量子信息,并理解其物理解释。然后,本课程探讨关键的量子算法,包括用于数据库搜索的 Grover 算法和用于整数分解的 Shor 算法,并使用 Qiskit 等工具进行实际实现。此外,我们还探讨了量子纠错方法、量子硬件平台和量子复杂性理论等主题。在课程的后半部分,我们专注于应用。我们研究量子通信协议、量子网络和量子密码学,包括 BB84 等量子密钥分发协议。本课程还探讨了量子时代传统密码学的脆弱性,并介绍了后量子密码算法。最后,我们介绍了量子机器学习,并讨论了当代量子技术及其潜在影响。
调节癌细胞、免疫细胞或两者的代谢是增强营养竞争性肿瘤微环境中癌症免疫疗法的一种有前途的策略。谷氨酰胺已成为理想的靶标,因为癌细胞高度依赖谷氨酰胺来补充有氧糖酵解过程中的三羧酸循环。然而,非特异性谷氨酰胺限制可能会在无关组织中引起不良影响,因此谷氨酰胺抑制剂迄今为止在临床上取得的成功有限。在这里,我们报告了一种氧化还原响应性前药 6-重氮-5-氧代-L-正亮氨酸 (redox-DON) 的合成和评估,用于肿瘤靶向谷氨酰胺抑制。当用于治疗患有皮下 CT26 小鼠结肠癌的小鼠时,与最先进的 DON 前药 JHU083 相比,redox-DON 表现出同等的抗肿瘤功效,但安全性大大提高,特别是在脾脏和胃肠道中。此外,redox-DON 与检查点阻断抗体协同作用,导致肿瘤小鼠的持久治愈。我们的结果表明 redox-DON 是一种安全有效的肿瘤靶向谷氨酰胺抑制疗法,有望增强代谢调节免疫疗法。可逆化学修饰方法可推广到其他具有明显毒性的代谢调节药物。
(b) 假设 U 和 V 是幺正算子,E 和 F 是用于近似 U 和 V 的保迹量子运算。设 d ( · , · ) 为密度矩阵空间中的任意度量,满足 d ( UρU † , UσU † ) = U ( ρ, σ ),其中,对于所有密度矩阵 ρ 和 σ 以及幺正 U(一个例子是角 arccos[ F ( ρ, σ )] ),则相应的误差 E ( U, E ) 定义为
实验物理学的科学进步不可避免地依赖于基础技术的不断进步。激光技术可以实现受控的相干和耗散原子光相互作用,而微光学技术则可以实现标准光学无法实现的多功能光学系统。本论文报告了这两项技术的重要进展,目标应用范围从里德堡态介导的量子模拟和光镊阵列中单个原子的计算到高电荷离子的高分辨率光谱。报告了激光技术的广泛进展:通过引入机械可调透镜支架,外腔二极管激光系统的长期稳定性和可维护性得到显著改善。开发了基于类似透镜支架的锥形放大器模块。二极管激光系统由数字控制器补充,用于稳定激光频率和强度。控制器提供高达 1.25 MHz 的带宽和由商业 STEMlab 平台设定的噪声性能。此外,还开发了针对强度稳定和 Pound-Drever-Hall 频率稳定进行优化的散粒噪声受限光电探测器以及用于 MHz 范围拍音的光纤探测器。通过分析用于波长为 780 nm 的 85 Rb 激光冷却的激光系统的性能,证明了所提出技术的能力。参考激光系统稳定到由调制传输光谱提供的光谱参考。分析该光谱方案以发现高调制指数下的最佳操作。使用紧凑且经济高效的模块产生合适的信号。实现了一种基于光学锁相环的激光偏移频率稳定方案。来自参考激光系统的所有频率锁定均提供 60 kHz(FWHM)的 Lorentzian 线宽以及 10 天内 130 kHz 峰峰值的长期稳定性。基于声光调制器与数字控制器相结合的强度稳定允许在微秒时间尺度上进行实时强度控制,并辅以响应时间为 150 纳秒的采样保持功能。对激光系统的光谱特性提出了很高的要求,以实现量子态的相干激发。在本论文中,通过引入一种用于二极管激光器的新型电流调制技术来增强主动频率稳定的性能。实现了从 DC 到 100 MHz 的平坦响应和低于 90 ◦ 的相位滞后,最高可达 25 MHz,从而扩展了可用于激光频率稳定的带宽。将该技术与快速比例微分控制器相结合,实现了两个激光场,相对相位噪声为 42 mrad rms,用于驱动铷基态跃迁。通过双光子方案进行相干里德堡激发的激光系统通过从 960 nm 倍频提供 780 nm 和 480 nm 的光。从单模光纤获得的 480 nm 输出功率为 0.6 W。两个激光系统的频率都稳定在高精细度参考腔中,导致 960 nm 处的线宽为 1.02 kHz(FWHM)。数值模拟量化了有限线宽对里德堡拉比振荡相干性的影响。开发了一种类似于 480 nm 里德堡系统的激光系统,用于高电荷铋的光谱分析。先进的光学技术也是微光学镊子阵列的核心,它提供了前所未有的系统尺寸可扩展性。通过使用优化的透镜系统与自动评估程序相结合,演示了具有数千个点且阱腰小于 1 µm 的镊子阵列。使用增材制造工艺生产的微透镜阵列实现了类似的性能。微透镜设计针对制造工艺进行了优化。此外,还分析了由于抑制谐振光导致的偶极阱散射率,证明了使用锥形放大器系统生成偶极阱的可行性。
本报告为我们提供了几个关键要点。值得注意的是,量子优势的确切性质和全部范围,以及实现这些技术对 DOE 相关问题的影响所需的资源,仍然是一个活跃的研究领域。虽然 QIS 在过去几十年中取得了重大的根本性进步,但它仍处于技术发展的初期。仍然存在多个基础和工程挑战。克服这些挑战中的每一个都需要大量的研发、进一步的科学发现和创新。因此,路线图中报告的时间表具有不确定性。不仅需要在 QIS 科学和技术方面取得进展,还需要在封装、系统工程、光调制器、源、探测器、集成、控制、新材料等相邻领域取得进展。此外,一个技术领域的进步将使其他领域受益。例如,量子计算的进步可能会推动网络量子中继器的进步。