摘要算法偏见是教育环境中机器学习模型中的主要问题。但是,它尚未在亚洲学习环境中进行彻底研究,并且只有有限的工作才考虑了基于区域(亚国家)背景的算法偏见。作为解决这一差距的一步,本文研究了菲律宾一所大型大学的5,986名学生的人口,并根据学生的区域背景调查了算法偏见。大学在广泛领域的在线课程中使用了画布学习管理系统(LMS)。在三个学期的典范上,我们收集了4870万个学生在画布中活动的日志记录。我们使用这些日志来训练从LMS活动中预测学生成绩的二进制分类模型。表现最佳的模型达到0.75,加权F1得分为0.79。随后,我们根据学生区域检查了偏见的数据。使用三个指标进行评估:AUC,加权F1得分和MADD在所有人口组中均显示出一致的结果。因此,在年级预测中对特定学生群体没有观察到不公平。
4. 汇总偏差:当数据集来自整个人口时,可能会对个人或小群体得出错误的结论。这种偏差最常见的形式是辛普森悖论(Blyth,1972),当只考虑整个人口的汇总数据时,小群体数据中观察到的模式就会消失。最著名的例子来自 1973 年加州大学伯克利分校的录取(Bickel 等人,1975)。根据汇总数据,女性申请者被拒绝的次数似乎明显多于男性。然而,对部门级数据的分析显示,大多数部门男性的拒绝率更高。汇总数据未能揭示这一点,因为女性申请总体录取率低的部门的比例高于申请录取率高的部门的比例。
另请参阅:可穿戴传感器在 SARS-CoV-2 感染检测中的表现:系统评价,Mitratza 和 Goodale 等人。《柳叶刀数字健康》
使用AI辅助预测模型报告的美国医院中约有65%最常用于预测住院健康轨迹,识别高风险门诊患者并促进安排。虽然61%的医院评估了其准确性的预测模型,但只有44%的医院对偏见进行了类似的评估。与资源不足的医院或使用外部开发人员相比,拥有更多财务资源和技术专业知识的医院更有可能拥有和评估AI模型。
每位患者接受了虚拟治疗师阿凡达(Avatar)的30分钟咨询课程,该会议接受了动机访谈,认知行为疗法和其他技术的AI培训,以帮助患者改变其行为。超过85%的患者表示,他们发现会议有益,而90%的患者表示有兴趣再次使用虚拟治疗师。
试图为生物识别验证应用创建更熟悉的脑机互动,我们研究了使用用户的个人爱好,兴趣和内存收集的效率。这种方法创造了独特而愉快的体验,以后可以在身份验证协议中使用。本文介绍了一个新的脑电图数据集,而受试者则观看流行爱好的图像,没有兴趣的图片和具有出色个人意义的图像。此外,我们提出了几种可以通过新收集的数据集来解决的应用程序。也就是说,我们的研究展示了4种应用类型,我们为所有这些应用提供了最先进的结果。已解决的任务是:情绪分类,类别分类,授权过程和人识别。我们的实验显示出对人们身份验证的脑电图可视化响应的巨大潜力。在我们的研究中,我们显示了通过脑电图衡量的识别人的个人爱好偏见的初步结果。此外,我们提出了使用脑电图的新型授权过程范式。代码和数据集可在此处提供。
模型偏差。人寿保险部门内的后果是深远的,影响了围绕政策定价,承保和风险评估的关键决策,以及潜在的歧视性影响的资格。本节段深入研究模型偏差的理论基础,对其各种表现进行了分类,并通过特定于部门的场景说明了其发生。通过剖析偏见无意间编码为预测模型的实例,我们旨在阐明这种偏见使社会差异永久存在的途径,从而挑战精算专业,以严格评估和完善其分析方法。
将AI系统纳入支持决策过程以增强人类系统可以提供预测或脱离可能未引起人类的预测相关性的能力有很大的优势(Cummings,2004)。然而,除了围绕AI炒作的兴奋之外(Fishburne,2024),人们对其道德,社会和法律的影响越来越关注,尤其是对性别偏见。而不是仅仅试图以道德和合法的方式导航AI炒作,而是需要询问的第一个问题不是AI系统是否可以将AI系统纳入过程或产品中,而是首先应使用AI。正如加布里埃拉·拉莫斯(Gabriella Ramos,2024年)在联合国教科文组织的《女性4道德AI会议》上指出的:“如果我们能为妇女制作,我们就可以为所有人做到这一点。”性别偏见不仅与男人和女人的二进制定义有关,而且是将男性用作系统设计默认值的观点(Perez,2019),不包括其他性别,包括女性,这些性别占世界人口的一半以上。这种偏见不仅是一个道德问题,而且是一个系统性的问题,在整个AI生命周期中存在。
conoraw@princeton.edu First Version: March 2019 This Version: November 2020 We thank Pol Antràs, David Autor, Costas Arkolakis, Gideon Bornstein, Laura Castillo-Martinez, Jonathan Dingel, Pierre-Olivier Gourinchas, Gordon Hanson, J. Bradford Jensen, Thomas Kemeny, Chris Moser, Michael Peters, Esteban Rossi-Hansberg和Steve Redding对有见地的评论和Serena Sampler提供了出色的研究帮助。此处表达的任何意见和结论都是作者的观点,不一定代表美国人口普查局的观点。所有结果均已审查,以确保未披露机密信息。Eckert和Walsh感谢普林斯顿大学的国际经济学部分,其中一些工作已经完成。本文的当前版本取代了“熟练的可交易服务:美国高技能劳动力市场的转型”。
为了感知环境中的对象并互动,我们毫不费力地在所需的位置配置了我们的figertips。因此,可以合理地假设潜在的控制机制依赖于有关我们的手和纤维的结构和空间维度的准确知识。然而,这种直觉受到了多年的研究挑战,表明纤维几何学的感知中存在巨大的偏见。1–5这种感知偏见被视为证据表明大脑对人体的内部表示被扭曲,6导致了关于我们行为熟练的明显悖论。7在这里,我们对手工感知的偏见提出了另一种解释,这是噪音的贝叶斯整体的结果,但是关于纤维几何和姿势的无偏见,无偏的体感信号。为了解决这一假设,我们将贝叶斯反向工程与索引填充剂的关节和填充定位进行的行为实验相结合。,我们以感觉或在空间坐标中对贝叶斯的整合进行了建模,表明后一种模型变体导致了纤维感知的偏见,尽管有准确表示纤维长度。关节和纤维化定位响应的行为度量显示出相似的偏见,这些偏见是由空间基的,但不是基于感觉的模型变体所填充的。空间模型变体还优于具有内置几何偏差的失真手模型。总的来说,我们的结果表明,纤维几何形状的感知失真不会反映扭曲的手模型,而是源自几乎最佳的贝叶斯对体感信号的推断。