两个可极化碎片之间的 Lennard-Jones 相互作用的比例因子 𝑞- 可极化碎片的净电荷 𝛼- 可极化碎片的分子极化率 𝜇̅ 可极化碎片的偶极矩 𝑟 # 0 两个可极化碎片的质量中心之间的平衡距离 𝑇(𝑟) Thole 阻尼函数 𝑎 Thole 阻尼参数 𝑓 ++ (𝑟) Tang-Toennies (TT) 阻尼函数 𝑏 ++ 和 𝑐 ++ Tang-Toennies 阻尼参数 𝑡 时间 𝑑𝑡 时间步长 𝐷 扩散系数 𝑉 模拟盒的体积 𝑃 ,- 𝛼𝛽 平面中的应力 𝑔(𝑟) 径向对分布函数 𝑟 .,0
相比之下,IRRAS在氧化物和二元组中的应用通常不那么发达了。虽然广泛可用的氧化物粉末吸附剂的实验性IR数据,但这些材料的宏观单晶的10,11 IRRAS数据受到限制。10–13此限制源于电介质的特定光学特性,并阻碍了直到最近氧化物上IRRAS数据的实验记录。金属和半导体之间的关键区别是通过金属电子对电场进行筛选,影响总红外反射率,并引起所谓的表面选择规则,管理金属表面上的IRRAS。2,14该规则规定,对于金属,通常仅具有过渡偶极矩的成分的振动
冷分子为量子信息、冷化学和精密测量提供了极好的平台。某些分子对标准模型物理具有超强的灵敏度,例如电子的电偶极矩 (eEDM)。分子离子很容易被捕获,因此对于灵敏度随询问时间变化的精密测量特别有吸引力。在这里,我们展示了在量子投影噪声 (QPN) 极限下具有秒级相干性的自旋进动测量,其中数百个被捕获的分子离子被选中,因为它们对 eEDM 敏感,而不是它们对状态控制和读出的适应性。取向分辨的共振光解离使我们能够同时测量具有相反 eEDM 灵敏度的两个量子态,达到 QPN 极限并充分利用高计数率和长相干性。
极性分子由于其固有的电偶极矩和可控的复杂性,成为标准模型 (BSM) 以外物理的精确测量搜索和量子模拟/计算的强大平台。这导致了许多在量子水平上冷却和控制分子的实验努力。由于其独特的旋转和振动模式,多原子分子(含有三个或更多原子的分子)最近引起了人们的关注,作为与原子和双原子分子相比具有明显优势和挑战的量子资源。在这里,我们讨论了多原子分子激光冷却到超冷状态的结果,以及使用多原子分子大大改进基本对称性测试、暗物质搜索和 CP 破坏 BSM 物理搜索的未来前景。
分子光谱是分子与电磁辐射相互作用时的电子,振动和旋转激发的分析。它被广泛用作识别和表征材料定量和定性分析的分子的工具。摩尔的光谱是入射电磁辐射的测量吸收或发射。每个分子都为特定的光谱法产生独特的光谱,从而使光谱被用作分子的ngerprint。红外(IR)光谱法是一种光谱技术,它阐明了改变其偶极矩的分子的振动模式。1这些振动模式导致摩尔数在红外线区域吸收电磁辐射,该区域位于波数4000 - 400 cm-1的范围内。官能团在1500 cm - 1以上的峰区域中具有独特的吸光度,称为功能组区域。2
在1968年具有同时负介电常数和同时发挥作用的材料中,光的阴性折射是在过去十年中引起了相当大的关注[2-7]。带有负折射指数的材料有望令人惊讶,甚至是反直觉的电磁和光学效应,例如多普勒偏移和塞伦科夫辐射的逆转[4] [4],evanescentent Wave的扩增[8] [8],亚波德的集中[8-10]等[8-10]等[11,1,1,1]。折射率材料,包括人工复合材料[13,14],光子晶体结构[15],传输线模拟[11]和手性介质[17-18]和光子谐振材料以及光子共振材料(相干原子蒸气)[19-21]。感兴趣的频率范围[1,4]。但是,典型的过渡磁偶极矩小于过渡电偶极矩,其限量的速度是纤维结构常数的一倍(α≈1
电流源(CS)具有很大的意义,例如计量学单元的校准以及基本物理学中旋转电偶极矩的测量。[1-6]参考。[1 - 6],获得高效果的要点之一是CS的稳定性。因此,应使用一些补偿方法来抑制当前的噪声。commy,CS噪声被反馈控制系统抑制,该反馈控制系统将电流转换为具有高精度电阻器的电压。[7]但是,由于电子设备中的噪声(对于Examply,1 / F噪声,热噪声和射击噪声),因此有效抑制低频噪声是挑战。需要在低频中使用更高的当前测量方法来解决此问题。幸运的是,根据Ampere定律,电流可以通过线圈转换为磁场,可以通过磁力计测量。目前,光学泵送磁力计(OPM)的灵敏度已达到10英尺 /√< / div>