二氧化碳(CO 2)通过矿化捕获,利用和储存(CCU)已被证明可减少独立植物中的温室气体(GHG)排放,而且还可以减少大规模气候供应链中的二氧化碳和储存率(GHG)的排放。然而,通过矿化实施大规模供应链为CCUS实施大规模的CCU,需要大量的金融投资,因此对其经济学有深刻的了解。目前的文献估计了独立植物的CO 2矿化经济学。CO 2矿化工厂具有特定的a)CO 2供应,b)固体原料供应,c)能源供应和d)产品市场,但工厂级成本估计并不能说明大型且潜在的共享供应链。在我们的研究中,我们通过在欧洲设计和分析CCU的成本优势供应链来评估矿化的经济学。我们的结果表明,避免了供应链中各个矿化厂的CO 2E减排成本范围为110至312欧元 /吨。通过矿化而提出的CCUS供应链可以避免欧洲的60吨Co 2e /年以2E减排成本可与CO 2捕获和地质存储相当。此外,我们确定了五个可以为CO 2矿化提供强大业务案例的地点。因此,分析显示了如何将CO 2矿化添加到欧洲的温室气体缓解组合中的途径。
摘要:直接空气碳捕获和储存 (DACCS) 是一种新兴的二氧化碳去除技术,它有可能从大气中去除大量的二氧化碳。我们对不同的 DACCS 系统进行了全面的生命周期评估,这些系统具有二氧化碳捕获过程所需的低碳电力和热源,包括独立和并网系统配置。结果表明,所有八个选定地点和五种系统布局的温室气体 (GHG) 排放量为负,在低碳电力供应和废热使用的国家,GHG 去除潜力最高(高达 97%)。自主系统布局被证明是一种有前途的替代方案,在太阳辐射高的地方,GHG 去除效率为 79-91%,避免消耗基于化石燃料的电网电力和热能。对除温室气体排放以外的环境负担的分析表明,二氧化碳去除存在一些权衡,尤其是光伏 (PV) 电力供应系统布局的土地改造。敏感性分析揭示了选择合适的电网耦合系统布局位置的重要性,因为在二氧化碳密集型电网电力组合的地理位置部署 DACCS 会导致净温室气体排放,而不是温室气体去除。关键词:生命周期评估 (LCA)、直接空气碳捕获和储存 (DACCS)、二氧化碳去除 (CDR)、负排放技术 (NET)
摘要:本出版物研究了泵送水电存储和电池储能系统的协调运营,以提高利用能力。虽然泵送的水电储藏可提供较高的存储容量,但响应时间较慢,但电池储能系统的容量较低,但响应时间更快。结合两者的混合系统可以利用协同作用。开发了一种混合企业线性编程模型,以描绘德国市场中这两个系统的协调使用。所提出的方法也适用于其他区域市场以类似方式交易的能源和平衡服务。在此型号中,泵送的水电存储在现货市场中运行,并提供自动频率恢复储备,而电池储能系统则提供频率遏制储备。该模型考虑了两种存储类型中降解效应所引起的成本。结果表明,与两个存储系统的独立运营相比,通过协调增加了10.05%。可以通过更有效地使用功率容量,尤其是电池能量系统的功率来实现此附加值。
摘要:本出版物研究了泵送水电存储和电池储能系统的协调运营,以提高利用能力。虽然泵送的水电储藏可提供较高的存储容量,但响应时间较慢,但电池储能系统的容量较低,但响应时间更快。结合两者的混合系统可以利用协同作用。开发了一种混合企业线性编程模型,以描绘德国市场中这两个系统的协调使用。所提出的方法也适用于其他区域市场以类似方式交易的能源和平衡服务。在此型号中,泵送的水电存储在现货市场中运行,并提供自动频率恢复储备,而电池储能系统则提供频率遏制储备。该模型考虑了两种存储类型中降解效应所引起的成本。结果表明,与两个存储系统的独立运营相比,通过协调增加了10.05%。可以通过更有效地使用功率容量,尤其是电池能量系统的功率来实现此附加值。
目的 面对温室效应导致的气体排放增加和化石燃料枯竭,需要采用对环境影响小且促进可再生能源的技术来满足能源需求。最近有报道称,磁加热激活的 CO 2 甲烷化是一种高效创新的电转气技术,可以成功储存可再生能源并增值二氧化碳。在这项工作中,我们对该过程进行了生命周期评估 (LCA),以突出该技术的环境潜力及其与传统加热技术的竞争力。方法 本 LCA 使用 IMPACT 2002+。所研究的过程集成了甲烷化、水电解和 CO 2 捕获与分离。这项“从摇篮到大门”的 LCA 研究不考虑反应产物甲烷的使用。使用的功能单元是产生的 CH.i 的能量含量。 LCA 是使用法国环境与能源管理局 (AD EME) 提供的 2020 年和 2050 年的能源结构数据进行的。消耗数据要么来自文献,要么从 Marbaix (2019) 讨论的 LPCNO 测量中获得。将磁加热激活的 CO 2 甲烷化对环境的影响与使用传统加热 (Helmeth) 并考虑天然气开采对环境影响的电转气厂对环境的影响进行了比较。结果表明,反应物的总流速、CO 2 来源和能源结构对可持续 CH 4 生产的环境影响起着重要作用,而所考虑的催化剂的寿命没有显著影响。由于上述参数可能得到改进,预计到 2050 年,整个过程对环境的影响将减少 75%。这表明,当与工业废气和可再生电力生产相结合时,磁加热激活的甲烷化具有很高的环境潜力。结论与现有的使用外部加热源的类似工艺相比,该技术预计在环境方面具有竞争力,并且具有极强的响应动态性,符合可再生能源生产的间歇性。
摘要 青霉病是影响大蒜采后的主要病害之一。2023年,该病害在泰国清迈府的大蒜[Allium ampeloprasum var. ampeloprasum (Borrer) Syme]采后储藏期间被发现。从大蒜中分离得到3个真菌分离株,根据形态特征和核糖体DNA内部转录间隔区(ITS)、β -微管蛋白(BenA)、钙调蛋白(CaM)和RNA聚合酶II第二大亚基(rpb2)基因组合序列的系统发育分析,鉴定为大蒜青霉菌(Penicillium allii)。在致病性测定中,接种分离真菌的大蒜表现出与采后储藏期间观察到的症状相似的症状。在杀菌剂筛选试验中,多菌灵、苯醚甲环唑 + 嘧菌酯和苯醚甲环唑在半剂量和推荐剂量下均能有效完全抑制该真菌,而该真菌对克菌丹和代森锰锌不敏感。此外,多菌灵、氧氯化铜、苯醚甲环唑与嘧菌酯的组合以及苯醚甲环唑单独使用时,双倍推荐剂量可完全抑制该真菌。据我们所知,这是泰国首次报道由 P. allii 引起的大蒜鳞茎采后蓝霉病。此外,杀菌剂敏感性筛选的结果有助于制定有效的管理策略,以控制由 P. allii 引起的大蒜鳞茎采后蓝霉病。
在历史条件下(1998 - 2020年),我们的模型再现了观察到的时间和空间死亡率模式。RCP2.6和RCP8.5气候场景下的未来模拟(2021 - 2070)显示了挪威云杉死亡率的周期性。即使干旱年道形模型又繁殖了过去的动态,但他们也不同意未来与干旱有关的死亡率事件的时机和幅度。包括DVM中的干旱死亡率,显示2070年地上生物量的大幅降低(例如,与没有干旱死亡率的基线模拟相比,RCP2.6中的 -18%(在所有模拟中平均)为-36%(平均值)。 根据模型,在2021年至2070年期间,德国各地的潜在收获的潜在收获减少可能会累积至3.1亿毫克C(RCP2.6)和4.47亿毫克C(RCP 8.5)。。-18%(在所有模拟中平均)为-36%(平均值)。根据模型,在2021年至2070年期间,德国各地的潜在收获的潜在收获减少可能会累积至3.1亿毫克C(RCP2.6)和4.47亿毫克C(RCP 8.5)。我们的研究强调了德国大规模未来挪威云杉森林死亡的严重风险。对此类死亡事件的幅度和时机的决定仍然高度不确定。然而,在预测建模研究中应考虑此类事件,因为它们可能对森林碳循环和收获产生基本影响。
摘要:CO 2在耗尽的碳酸盐形成中的地下存储是限制其人为释放并最大程度地减少全球变暖的合适方法。岩石可湿性是控制CO 2捕获机制及其在地理储存形成中其遏制安全性的重要因素。地理储物岩包含先天有机酸,从而改变了岩石表面从亲水条件到疏水状态的润湿性,从而降低了CO 2存储能力。在这项研究中,通常将其释放到环境中的有毒染料的甲基橙色用作可湿性的修饰,以将硬脂酸老化方解石(油湿)的润湿性更改为湿。本研究使用接触角技术(无柄滴法)检查甲基橙(10-100 mg/l)对CO 2/盐水/盐水酸酸盐衰老的变性系统在地理储存条件下(即25和50°C的温度为5-20 mpa的压力)的润湿性的影响。结果表明,有机酸污染的岩石表面的前进和逐渐接触角(θa和θr)在暴露于甲基橙甲基时会大大降低,分别达到62°和58°的最小值,在20 mpa和50 mpa中的存在中,其含量为20 mpa和50°C。进入地下水库,以降低环境污染的水平,同时增加碳酸盐地层的CO 2存储能力。
为了减少温室气体排放和化石燃料对环境的影响,摩洛哥决定增加可再生能源的使用。可再生能源的间歇性导致电网不稳定。储能是解决这一问题的合适方法。压缩空气储能是一种将能量以高压压缩空气的形式储存在地上储罐或地下洞穴中的技术。大规模存储压缩空气能量需要在盐洞或含水层中储存大量能量。本文旨在找出整合地下压缩空气储能技术的好处。摩洛哥的一个案例研究用于估算能源加储能的平准化成本 (LCOES)。分析了摩洛哥太阳能和风能发电厂的年容量系数以及地下洞穴的潜力。结果表明,对于在卡萨布兰卡地区安装的 100 MW 容量的系统,绝热压缩空气储能系统 (ACAES) 与风力涡轮机装置的组合可提供每千瓦时最低的电价,平均 LCOES 为 0.04 美元/千瓦时。
3.1 机械性能 3.1.1 0° 拉伸模量 Msi 22 3.1.2 90° 拉伸模量 Msi 1.4 3.1.3 最小 0° 拉伸强度 ksi 370 3.1.4 最小 90° 拉伸强度 ksi 12 3.1.5 0° ε 微应变 7500 3.1.6 90° ε 微应变 7500 3.1.7 0° CTE 10 -6 m/m K TBD 3.1.8 90° CTE 10 -6 m/m K TBD 3.1.9 弯曲强度 ksi 3.2 物理性能 - 层压板 3.2.1 孔隙率体积 % < 2 3.2.2 纤维含量体积 % > 58