钻孔热能存储系统的优化设计可以确保满足其技术经济目标。当前的设计优化方法要么采用不适合数值优化的详细建模,要么使用不考虑操作条件的简化模型。本文提出了一种面向优化的模型和非凸优化公式,与文献中的其他研究不同,它可以考虑季节性存储大小和温度对其容量、损耗、传热速率以及连接热泵或冷却器的效率的影响。该方法应用于一个案例研究,考虑了两种情况:仅存储冷却产生的热量和集成太阳能热发电。结果表明,随着电力二氧化碳强度分布、冷却需求和碳排放价格等边界条件的变化,不仅最佳季节性存储规模会发生变化,其最佳运行条件也会发生变化。在标准边界条件下,二氧化碳排放量的潜在减少量有限(最多 6.7%),但冷却需求的增加和二氧化碳强度季节性变化的增强导致排放量减少 27.1%。太阳能发电的整合率进一步提高到43.7%,而年成本则略有增加,仅为6.1%。
免责声明:本文件是作为美国政府赞助的工作的帐户准备的。虽然该文件被认为包含正确的信息,但美国政府,其任何机构,加利福尼亚大学或其任何雇员的董事均未对任何信息,设备,产品或流程的准确性,完整性或有效性,都不会有任何法律责任,或者承担任何法律责任,这些责任是任何信息,设备,产品或流程所披露或代表其私人私有权利的使用权。以此处提到任何特定的商业产品,流程或服务的商标,商标,制造商或其他方式,并不一定构成或暗示其认可,推荐或受到美国政府或其任何机构或加州大学摄政的认可,建议或偏爱。本文所表达的作者的观点和意见不一定陈述或反映美国政府或其任何机构或加利福尼亚大学的董事会的观点和观点。
碳捕获与储存 (CCS) 是一套从大型排放源或大气中捕获二氧化碳并将其安全封存于地下或永久封存于产品中的技术。CCS 是一种多功能技术,既可以减少工业、发电和制氢的排放,也可以通过直接空气捕获和 CCS(DACCS)和生物能源和 CCS(BECCS)去除二氧化碳 (CDR)。CCS 是气候变化解决方案的重要组成部分,国际能源署 (IEA) 和政府间气候变化专门委员会 (IPCC) 等组织通过分析实现净零排放的潜在途径,支持了这一观点,这些组织强调了点源捕获 CCS 以及工程化 CDR 技术(如 DACCS 和 BECCS)的明确作用。
摘要。能够缩小夏季可再生能源发电和冬季供暖需求之间季节性差距的技术对于减少能源系统的二氧化碳排放至关重要。钻孔热能存储 (BTES) 系统提供了一种有吸引力的解决方案,其正确的尺寸对于其技术经济成功至关重要。大多数 BTES 设计研究要么采用详细的建模和仿真技术,这些技术不适合数值优化,要么使用明显简化的模型,不考虑操作变量的影响。本文提出了一种 BTES 建模方法和混合整数双线性规划公式,可以考虑季节性 BTES 温度波动对其容量、热损失、最大传热速率以及连接的热泵或冷却器的效率的影响。这使我们能够准确评估其在不同温度和不同操作模式(例如 BTES 直接排放或通过热泵)下运行的不同区域供热和制冷网络中的集成性能。考虑一个在电力的二氧化碳强度随季节变化的情况下使用空气源热泵的案例研究,研究了集成 BTES 和太阳能集热器的能源系统的最佳设计和运行。优化旨在最大限度地降低能源系统的年度成本和二氧化碳排放量,该优化适用于两种供热网络温度和五种代表性碳价。结果表明,最佳 BTES 设计在尺寸和运行条件方面都发生了变化,与基于标准空气源热泵的系统相比,排放量最多可减少 43%。
摘要:氢气正成为燃料电池运输、热能和电力领域整合中越来越重要的能源载体。地下盐穴是储存利用可再生能源 (RES) 发电从水电解中获得的氢气的最有前途的方法之一。同时,氢气的生产可用于避免电力需求低或价格低时的能源削减。储存的氢气还可用于发电能源需求高的时候,例如燃料电池,以弥补可再生能源发电量低造成的波动和短缺。本文概述了为实现上述目的而使用和提出的利用可再生能源过剩能量从水中生产氢气的技术及其储存技术,特别是在地下盐穴中的储存技术,以及其可行性。本文根据目前的最新技术比较和总结了竞争技术,确定了氢气生产和储存的一些困难,并讨论了哪种技术最有前途。相关分析比较了氢气生产和储存系统的成本和技术经济可行性。本文还指出了氢气融入电网的潜力、技术挑战和局限性。
1 伊拉克大学工程学院电气工程系,巴格达 10071,伊拉克;farqad_alani@yahoo.com 2 加尔米安大学教育学院物理系,卡拉尔 46021,伊拉克;hayder.i.mohammad@garmian.edu.krd 3 巴格达大学能源工程系,巴格达 10071,伊拉克;hussein.alnajjar@coeng.uobaghdad.edu.iq (HMTA-N.);jasim@siu.edu (JMM) 4 跨学科研究中心,药理学系,萨维塔医学和技术科学研究所,萨维塔牙科学院,萨维塔大学,钦奈 600001,印度; Lakshmi@saveetha.com 5 放射学和医学成像系,应用医学科学学院,萨坦·本·阿卜杜勒阿齐兹王子大学,Al-Kharj 11942,沙特阿拉伯;m.alhassen@psau.edu.sa 6 堪培拉大学健康学院,堪培拉,ACT 2600,澳大利亚 7 库姆理工大学机械工程系,库姆 3718146645,伊朗;ebrahimnataj.m@qut.ac.ir 8 加拿大自然资源部 CanmetENERGY 研究中心,加拿大安大略省渥太华 K1A 1M1 9 食物链可持续能源利用中心,能源未来研究所,伦敦布鲁内尔大学,Kingston Lane,Uxbridge,Middlesex UB8 3PH,英国pouyan.talebizadehsardari@brunel.ac.uk (PT)
最近,将高熵引入各种用于不同应用的材料引起了研究人员的兴趣越来越大,并促进了一系列单相多层(等极)材料的快速发展。[1-4]在无序的多组分系统中,大型构型熵被认为可以稳定晶体结构,从而传递高渗透效果(HE)效应,即,熵驱动的施加效果以及相关的“鸡尾酒”效应由阳离子混合以及化学和结构多样性产生。[1,4,5] Within the past few years, a large number of high-entropy materials (HEMs), represented first by high-entropy alloys (HEAs) [1,5–8] and later by high- entropy oxides (HEOs), [3,9–13] have been utilized in a broad range of applications, including environmental protection, elec- trochemical energy storage, and thermo- electric and catalytic applications.在电池材料中,最近的几份报告表明,高熵的引入可以大大改善循环性能,例如,在HEO和高渗透氧气中(HEOFS)。[9,10,14–24] In a previous study by our group, rock-salt (Co 0.2 Cu 0.2 Mg 0.2 Ni 0.2 Zn 0.2 )O was proposed as a promising anode material for lithium-ion batteries (LIBs), with a unique entropy- stabilized Li-storage mechanism, guaranteeing the reversible conversion reaction and leading to improved cycling stability and Coulombic efficiency.[25,26]另一个针对电化学应用的限制是,据报道,HEO在电化学循环期间会经历不利的相位,这可以使其成为[9]此外,HU和同事在层状O3型HEO上报道了钠离子电池(SIBS)的互嵌型阴极[10],表现出良好的长期可环性和速率性能,并促进宿主矩阵的熵稳定。然而,高注册材料的缺点是它们的制备通常涉及具有高能量成本的程序,例如(高能量)球磨碎或高温处理(> 900°C),并且可以容易容易出现相位分离(例如,对于多物质纳米属粒子)。
能源计划是实现低碳高效能源供应的能源转型过程的核心。它们旨在为能源转型过程提供信息、指导和引导。例如,人们认为能源计划可以为引导转型提供见解 [1] ,在高度不确定的情况下指导决策 [2] ,或促进替代技术路径 [3] 。本文分析了能源计划如何帮助引导那些正在应对不确定和模糊的能源转型的参与者 [4] 。处于持续能源转型中的参与者需要在不了解其行动可能产生的影响的情况下做出决策,因此他们经常求助于知识生成,以减少不确定性、评估其选择或预测其行动的后果。虽然计划在科学和专业能源规划界都得到了广泛使用,但它们的使用方式并未受到太多关注。为了解决这一研究空白,本文采取了一种新颖的方法,研究能源计划如何为投资创新技术的参与者的感知过程提供信息。本文通过反思计划的实际用途,而不是假设其在不确定情况下的实用性,为现有的能源规划文献做出了贡献。这是通过案例研究实现的,该研究遵循了投资热能存储 (TES) 的过程,从将其概述为低碳能源系统的众多重要技术之一,到最终决定投资 TES。
随着间歇性可再生能源的普及,热能存储 (TES) 成为一种越来越受欢迎的工具,可以平衡日常电力需求并增加电网的稳定性。TES 系统可以局部地将高热负荷与热泵的运行分离,或者通过提供更有利的温度梯度来降低热泵的电能需求。此外,许多政策制定者和公用事业提供商已经为住宅用户引入了分时 (TOU) 费率表,以更好地反映特定时间的发电价格和需求。TOU 费率表根据地区的气候、季节和电力生产组合,在一天中对电网提供的电力进行不同的定价。高峰和非高峰电价之间的巨大差异可能会为住宅客户安装 TES 系统带来经济优势。在这项工作中,使用 TOU 费率结构计算了模拟的 223 平方英尺住宅建筑的经济和能源节约,该建筑使用水/冰基 TES。天气数据来自加利福尼亚州弗雷斯诺县,ASHRAE 气候区 3B,并使用了加利福尼亚州一家公用事业提供商提供的代表性住宅 TOU 公用事业费率结构。模拟仅在夏季极端炎热的白天温度的一周内进行制冷,结果表明,安装 TES 后,总能耗可减少 14.5%,高峰能源使用量可减少 87.5%。使用样本公用事业费率计划,该系统用于空间制冷的运营成本降低了近 20%。