动机:通过将有向无环图 (DAG) 模型应用于蛋白质组数据推断出的有向基因/蛋白质调控网络已被证明可有效检测临床结果的因果生物标志物。然而,在 DAG 学习中仍然存在尚未解决的挑战,即联合建模临床结果变量(通常采用二进制值)和生物标志物测量值(通常是连续变量)。因此,在本文中,我们提出了一种新工具 DAGBagM,用于学习具有连续和二进制节点的 DAG。通过为连续和二进制变量使用适当的模型,DAGBagM 允许任一类型的节点在学习图中成为父节点或子节点。DAGBagM 还采用了引导聚合策略来减少误报并实现更好的估计精度。此外,聚合过程提供了一个灵活的框架,可以稳健地整合边缘上的先验信息以进行 DAG 重建。结果:模拟研究表明,与常用的将二进制变量视为连续变量或离散化连续变量的策略相比,DAGBagM 在识别连续节点和二进制节点之间的边方面表现更好。此外,DAGBagM 的表现优于几种流行的 DAG
摘要:同时定位和映射(SLAM)对于移动机器人技术至关重要。大多数vi-sual SLAM系统都假定环境是静态的。但是,在现实生活中,有许多动态对象,会影响这些系统的准确性和鲁棒性。为了改善视觉大满贯系统的表现,这项研究提出了基于定向的快速和旋转简短(ORB)-Slam3框架的动态视觉大满贯(SEG-SLAM)系统,您只能看一次(YOLO)V5深学习方法。首先,基于ORB-SLAM3框架,Yolov5深学习方法用于构建用于目标检测和语义分割的融合模块。此模块可以有效地识别并提取明显和潜在动态对象的先验信息。第二,使用先前的信息,深度信息和表现几何方法为不同的动态对象开发了差异化的动态特征拒绝策略。因此,提高了SEG-SLAM系统的定位和映射准确性。最后,拒绝结果与深度信息融合在一起,并使用点云库构建了无动态对象的静态密集映射。使用公共TUM数据集和现实世界情景评估SEG-SLAM系统。所提出的方法比当前动态视觉大满贯算法更准确,更健壮。
阿尔茨海默氏病(AD)导致各种生物标志物(即淀粉样蛋白β和tau蛋白)的异常,这使得PET成像(可以解释这些生物标志物)在AD诊断中必不可少。然而,宠物成像的高辐射风险限制了其在短时间内的扫描数量,对AD的联合多生物标志物诊断提出了挑战。在本文中,我们提出了一个新型的统一模型,以同时合成MRI的多局部PET图像,以实现AD的低成本和时间效率的关节多生物标志物诊断。具体来说,我们将残留的学习纳入扩散模型中,以强调PET和MRI之间的域间差异,从而迫使每种模态以最大程度地重建其模式特定的细节。此外,我们利用年龄和性别等先验信息,以指导具有语义一致性的PET IMPEN的扩散模型,从而增强了它们的基因值。此外,我们会开发出一个域内差异损失,以确保合成PET IMEGIS之间的域内差异与真实PET图像之间的差异非常匹配,从而促进更准确的合成,尤其是在特定于模式的信息上。在ADNI数据集示例上进行的广泛的例证,即我们的方法在定量和质量上与最先进的方法相吻合。本研究的所有代码已上传到GitHub(https://github.com/ouzaixin/resdm)。
摘要 网络神经科学的图形信号处理方面的进步为整合大脑结构和功能提供了一条独特的途径,目的是揭示大脑在系统层面的一些组织原则。在这个方向上,我们开发了一个监督图形表示学习框架,通过图形编码器-解码器系统对大脑结构连接 (SC) 和功能连接 (FC) 之间的关系进行建模。具体来说,我们提出了一种配备图形卷积编码器的暹罗网络架构,以学习图形(即主题)级嵌入,以保留大脑网络之间与应用相关的相似性度量。这样,我们有效地增加了训练样本的数量,并通过规定的目标图形级距离带来了灵活性,可以合并额外的先验信息。虽然有关大脑结构-功能耦合的信息是通过从 SC 重建大脑 FC 隐式提取的,但我们的模型还设法学习保留输入图之间相似性的表示。学习到的表示的卓越判别能力在包括主题分类和可视化在内的下游任务中得到了证明。总而言之,这项工作通过利用度量数据分析的标准工具,倡导利用学习到的图形级、相似性保留嵌入进行脑网络分析的前景。索引术语 Ð脑连接组学、图形表示学习、孪生网络、图形卷积网络。
已经开发了一种移动专业填充系统,能够探测从表面到30公里以上的大气。移动专业填充系统(MPS)结合了地面仪器,包括五个梁924-MHz雷达风能填充器,无线电声音系统和两个被动微波探空仪,以及用于气象学卫星数据的接收器和处理器。通过将基于地面传感器套件与气象卫星套件产生的表面数据和利润结合在一起,从而从表面到最高的卫星发声水平产生了备件。算法会产生温度,湿度,风速和其他气象变量的声音。将来自单独源数据的数据组合的方法不是特定的站点,也不需要先验信息。国会议员具有各种应用的潜力,包括对中尺度地区研究和运营的气象变量的详细分析,例如区域污染研究和严重的风暴预测。本文介绍了合并卫星和基于地面遥感系统数据的方法,并从单个传感器和组合声音的一系列测试中提出了结果。组合声音的准确性似乎与Rawinsonde相吻合,除了卫星发声高度的风速外。国会议员在几个不同的气候中成功运作:在加利福尼亚州克莱蒙特的洛杉矶自由激进实验中,以及在新墨西哥州的White Sands导弹范围进行的测试;科罗拉多州伊利;英尺西尔,俄克拉荷马州;和弗吉尼亚州的沃洛普岛。
磁共振成像 (MRI) 是一种多功能医学成像方式,可在软组织之间提供出色的对比度。可以调整采集参数,以使这种对比度对各种组织特性敏感,例如质子密度以及纵向和横向弛豫时间(分别为 T 1 和 T 2 )。MRI 采集包括使用各种电磁脉冲反复激发人体内质子,并从图像中获取少量傅里叶样本。然后通过逆傅里叶变换运算将频域中的观测值重铸到空间域。典型的 MRI 数据包括任意方向的 2D 或 3D 图像。后者具有两个平面内空间维度和切片方向的第三个空间维度,因此它们可以看作张量。然而,MRI 的采集时间相对较慢,通常需要几分钟的时间。这种技术限制会阻碍 3D 高分辨率图像的采集。为了避免这个缺点,超分辨率技术已被证明在许多情况下是有效的 [1],[2],[3]。它们包括从一个或多个低分辨率观测中恢复 3D 高分辨率图像。最近,有人提出使用深度学习从单个低分辨率观测中恢复高分辨率图像 [4],[5]。然而,对于小病变,最好考虑多个观测以用于图像的诊断。这些观测可以合并到融合模型中,从而提供比单独处理更多的信息 [6]。使用融合范式避免了依赖外部患者数据库来获取先验信息。因此,在剩下的文章中,我们将重点关注从多个观测中进行超分辨率重建的问题,也称为多帧超分辨率。
1 显示了可用于 ATR 应用的各种传感器类型、武器平台类型、目标类型和先验信息。电磁波谱中能量的大气吸收决定了效用,并指导了常用于 ATR 应用的可见光、前视红外 (FLIR)、激光雷达、微波/毫米波雷达和声学传感器的开发。表 2 显示了这些传感器用于目标识别的工作原理和性能特征。术语 ATR 包括自主识别和辅助识别(或“人员在环”的提示)。在提示中,获取由瞄准系统完成,但最终识别由人完成。尽管许多研究人员希望自主执行各种各样的任务,但服务只会勉强自动化关键的操作员功能。人们天生就偏向于人类操作员的灵活性(例如,尽管拥有出色的陆基和海基战略导弹,但空军仍然依赖有人驾驶的战略核轰炸机)。人们更愿意将操作员从人类生存能力较低的任务中移除。士兵可能会远离“行动”,但预计不会放弃控制权。有“人在回路中”的辅助系统将优先于自主系统。现在已经确定,ATR 是一个多学科领域,需要在传感器、处理算法、架构、实施和软件和硬件系统评估方面拥有多样化的技术和专业知识。相关的计算机视觉和模式识别技术和系统已经从使用统计模式识别方法发展到基于模型的视觉,再到基于知识的系统。最近,实验室也在开发针对部分 ATR 问题的自适应和学习系统。图像理解 (IU) 与计算机视觉同义。IU 的重要目标之一是开发技术
摘要 近年来,神经网络,尤其是深度架构在脑机接口 (BCI) 领域的脑电信号分析中受到了广泛关注。在这个正在进行的研究领域,端到端模型比需要信号转换预分类的传统方法更受青睐。它们可以消除对专家的先验信息和手工特征提取的需求。然而,尽管文献中已经提出了几种深度学习算法,在对运动或心理任务进行分类方面取得了很高的准确率,但它们往往缺乏可解释性,因此不太受神经科学界的青睐。其背后的原因可能是参数数量众多,以及深度神经网络对捕捉微小但不相关的判别特征的敏感性。我们提出了一种称为 EEG-ITNet 的端到端深度学习架构,以及一种更易于理解的方法来可视化网络学习的模式。使用初始模块和带扩张的因果卷积,我们的模型可以从多通道脑电信号中提取丰富的光谱、空间和时间信息,并且复杂度(就可训练参数的数量而言)低于其他现有的端到端架构(例如 EEG-Inception 和 EEG-TCNet)。通过对 BCI 竞赛 IV 中的数据集 2a 和 OpenBMI 运动想象数据集进行详尽评估,EEG-ITNet 在不同场景中的分类准确率比其竞争对手高出 5.9%,具有统计学意义。我们还从神经科学的角度全面解释和支持网络图示的有效性。我们还在 https://github.com/AbbasSalami/EEG-ITNet 上免费提供我们的代码。
卷积神经网络 (CNN) 逐渐被神经影像学界认可为图像分析的强大工具。尽管它们性能出色,但 CNN 功能的某些方面仍未得到人类操作员的充分理解。我们假设,通过研究 CNN 在输入已知特征的数据时的行为,可以提高应用于神经影像数据的 CNN 的可解释性。我们分析了 3D CNN 区分从扩散加权磁共振成像获得的原始和改变的全脑参数图的能力。改变包括线性改变每个脑体积中一个(单区域)或两个(双区域)解剖区域的体素强度,但不模仿任何神经病理学。通过进行十倍交叉验证并使用保留集进行测试,我们根据改变区域的强度评估了 CNN 的辨别能力,比较了后者的大小和相对位置。单区域 CNN 表明,修改的区域越大,实现良好性能所需的强度增加越小。双区域 CNN 的表现优于单区域 CNN,但在相应的单区域图像上进行测试时,只能检测到两个目标区域中的一个。利用训练数据的先验信息可以更好地理解 CNN 行为,尤其是在组合改变的区域时。这可以告知 CNN 模式检索的复杂性并阐明错误分类的示例,这对于病理数据尤其重要。所提出的分析方法可能有助于深入了解 CNN 行为并指导利用我们先验知识的增强检测系统的设计。
摘要背景:贝叶斯基因组预测方法的开发是为了同时将所有基因型标记与一组可用的表型进行拟合,以预测数量性状的育种值,从而考虑到性状遗传结构(标记效应分布)的差异。这些方法还为全基因组关联 (GWA) 研究提供了灵活可靠的框架。本文的目的是回顾用于 GWA 分析的贝叶斯层次和变量选择模型的发展。结果:通过同时拟合所有基因型标记,贝叶斯 GWA 方法隐含地解释了群体结构和经典单标记 GWA 的多重测试问题。使用马尔可夫链蒙特卡罗方法实现的贝叶斯 GWA 方法允许使用从后验分布获得的概率来控制错误率。使用贝叶斯方法进行的 GWA 研究的功效可以通过使用基于先前关联研究、基因表达分析或功能注释信息的先验信息来增强。贝叶斯 GWA 分析适用于多种性状,可通过多性状、结构方程或图形模型深入了解多效性效应。贝叶斯方法还可用于结合基因组、转录组、蛋白质组和其他组学数据,以推断因果基因型与表型的关系,并提出可改善表现的外部干预措施。结论:贝叶斯分层和变量选择方法为基因组预测、GWA、先前信息的整合以及来自其他组学平台的信息整合提供了一个统一而强大的框架,以识别复杂数量性状的因果突变。