卷积神经网络 (CNN) 逐渐被神经影像学界认可为图像分析的强大工具。尽管它们性能出色,但 CNN 功能的某些方面仍未得到人类操作员的充分理解。我们假设,通过研究 CNN 在输入已知特征的数据时的行为,可以提高应用于神经影像数据的 CNN 的可解释性。我们分析了 3D CNN 区分从扩散加权磁共振成像获得的原始和改变的全脑参数图的能力。改变包括线性改变每个脑体积中一个(单区域)或两个(双区域)解剖区域的体素强度,但不模仿任何神经病理学。通过进行十倍交叉验证并使用保留集进行测试,我们根据改变区域的强度评估了 CNN 的辨别能力,比较了后者的大小和相对位置。单区域 CNN 表明,修改的区域越大,实现良好性能所需的强度增加越小。双区域 CNN 的表现优于单区域 CNN,但在相应的单区域图像上进行测试时,只能检测到两个目标区域中的一个。利用训练数据的先验信息可以更好地理解 CNN 行为,尤其是在组合改变的区域时。这可以告知 CNN 模式检索的复杂性并阐明错误分类的示例,这对于病理数据尤其重要。所提出的分析方法可能有助于深入了解 CNN 行为并指导利用我们先验知识的增强检测系统的设计。
主要关键词