该方法在《光科学与应用》杂志的一篇新文章中进行了详细介绍,文章名为《用于高效、广角、高精度光束控制的微型平面望远镜》,该方法解决了当前技术的固有局限性。也就是说,从自动驾驶汽车上的光检测和测距 (LiDAR) 到高精度卫星对卫星通信等所有领域所使用的技术只能在有限的范围内提供准连续的控制。吴建议利用具有数百年历史的科学工具加上现代元素来扩大控制范围:即采用现代液晶光学器件的望远镜。基于这一想法,吴和同事们展示了基于液晶聚合物平板光学器件的轻巧、经济高效的微型平面望远镜,用于光学角度放大。这代表了平面液晶光学器件超越当前发展的新里程碑。
1. 结合我们从之前两个原型中获得的知识,构建一个可展开的自调准 TIR 空间望远镜作为 12U 有效载荷(UCAM/S4)2. 包括视角和大面积覆盖,以从无人机数据创建高度逼真的模拟 TIR 空间数据(UCAM/S4)3. 继续我们的利益相关者参与计划(UCAM/S4)4. 开发工具来稳健地评估地球上任何建筑物的能量输出(UCAM)5. 设计一个系统原型以实现 TIR 条带测绘(S4)6. 在现有数据分发平台上开发测试模块,使 TIR 红外图像能够轻松地与可见光图像叠加(Open Cosmos Ltd)7. 专门为获得专利的自调准望远镜开发金刚石车削自由曲面光学器件(Durham Precision Optics - 新合作伙伴)。
一些关键科学问题,例如恒星形成、寻找类地系外行星等,只有工作在紫外-可见光波长范围且主镜直径大于 8 米的望远镜才能解答。未来的大型太空望远镜需要新技术以合理的成本满足其高性能要求。空中客车公司为欧洲航天局研究了两种截然不同的望远镜概念:一种是带有 4 米主镜的整体式望远镜,可提供阿丽亚娜 6 号整流罩可容纳的最大收集面积;另一种是大型可展开分布式孔径空间望远镜,其收集面积为 50 平方米,实现相当于 12 米直径的实际分辨率极限。确定了关键使能技术并概述了未来技术发展的路线图。这些技术包括大型整体镜面抛光、主动光学、可展开空间结构;低成本、轻型光学器件;以及波前传感和控制方法。
1. 简介 量子计算、通信和传感正受到越来越多的关注,因为它们在许多重要任务中都有望实现比传统系统更出色的性能。存在许多不同的量子模态(捕获离子、中性原子、光子、超导和半导体量子比特);它们对光子功能的需求各不相同。在某些系统中,光子充当量子比特,而在其他系统中,光学器件充当量子比特的接口,可以直接准备、操纵或读出量子态,也可以间接作为更大系统的一部分(例如提供经典通信通道或参考激光振荡器)。在所有情况下,光子集成电路 (PIC) 都为实现光学功能提供了一种有吸引力的选择,因为它们体积小;能够创建大型和复杂的光学电路,从而有助于实现功能或量子比特数量的扩展;而且,与离散光学和光学系统相比,它们通常具有更优越的环境稳定性。
摘要:手性纳米结构允许手性反应的工程;但是,它们的设计通常依赖于经验方法和广泛的数值模拟。尚不清楚是否存在一般策略来增强和最大化亚波长光子结构的内在手性。在这里,我们建议一种显微镜理论,并揭示了共振纳米结构的强性手性反应的起源。我们揭示了反应性螺旋密度对于在共振下实现最大的手性至关重要。我们在平面光子晶体板和元图的示例上演示了我们的一般概念,其中平面镜像对称是通过双层设计打破的。我们的发现为设计具有最大手性的光子结构提供了一般配方,为许多应用铺平了道路,包括手性传感,手性发射器和探测器以及手性量子光学器件。关键字:光学手性,手性元结构,连续体中的界限,圆形二科主义
Ranovus Inc. (“RANOVUS”) 今天在北美领先的光纤网络盛会 OFC 2021 上宣布,通过引入 Odin™ Analog-Drive CPO 2.0 架构,下一步将降低超大规模数据中心运营的功耗和总体成本。Ranovus 利用与领先的多太比特互连解决方案提供商 IBM Inc. (“IBM”)、TE Connectivity (“TE”) 和 Senko Advanced Components, Inc (“SENKO”) 的战略合作,为数据中心创建了第二代 CPO 2.0 配置。共封装光学器件 (CPO) 是一种创新方法,可在单个封装组件中为以太网交换机和 ML/AI 硅片提供 nx100Gbps PAM4 光纤 I/O,从而显着降低整个系统的成本和功耗。随着数据中心流量在人工智能和机器学习的推动下以前所未有的速度增长,网络基础设施必须在保持其总功耗和占地面积的同时扩大容量。 2020 年 3 月宣布的战略合作
• Portal 重新构想了定向和一般区域照明。专有光学器件以极简主义美学提供出色的照明控制。• 为了支持您的设计构想,5.5 英寸和 9 英寸尺寸均提供六种安装变体 - 嵌入式、半嵌入式、半嵌入式可调式、表面式、表面可调式和吊灯式。• 光输出范围从 1200 lm (5.5 英寸) 到 4100 lm (9 英寸),效率超过 150 lm/W。• 通过 30°、45° 和 65° 的光束角以及 20 | 80 和 50 | 50 直接/间接吊灯分布实现灵活的照明方案。• 可以组合白色、金属银色和黑色粉末涂层饰面(加上 RAL 颜色)以增强天花板设计。 • 80 和 90 CRI LED 有四种 CCT 可供选择 - 2700 K、3000 K、3500 K、4000 K。
光纤束拆分器用于将光从一个纤维分为两个或更多纤维。首先将输入纤维的光准直接发送,然后通过光束分裂的视频发送将其分为两部分。然后将结果输出梁聚焦到输出纤维中。1xn和2xn拆分器都可以以这种方式构建多达八个或以上的输出,而低回报损失和低插入损失。此设计非常灵活,使人们可以在不同端口上使用不同的纤维类型,并在内部使用不同的梁分离器光学器件。常规制造的定制设计结合了循环器,两极分化的溅射器和非极化拆分器。可以用永久连接到每个端口(辫子样式)的纤维或每个端口上的插座制成拆分器。我们还可以用Bui lt-In beamsplitters为激光或激光二极管源构建源源。有关详细信息,请联系Oz。
除上述因素外,EO/IR传感器的性能还取决于光学,检测器和显示。因此,仅根据规格来评估EO/IR传感器的潜在效用是不明智的,即不使用详细的工程模型。尽管如此,所有其他事物都是平等的,可以说,对于旨在识别或识别目标的成像传感器,最好拥有具有较小检测器元件的焦平面阵列,假设光学调制传输函数(MTF)并不限制整体系统MTF。这是因为,如果地面样品距离是限制因素,则此类设计的分辨率的改进将提高范围性能。在类似的“经验法则”静脉中,具有较大焦距的光学器件为更好的分辨率提供了潜力,假设探测器的MTF并不限制整个系统MTF。这是以减少传感器的整体视野为代价的。但是,我们强调的是,很难先到先验地预期影响图像质量的所有因素如何相互作用。因此,我们建议使用建模和详细的系统分析来解释潜在的传感器性能。