微粗糙度和低表面能防冰表面因具有超疏水和低冰亲和力而受到研究人员的极大兴趣。然而,通过模板法快速制备未开发微结构的超疏水表面 (SHS) 一直是进一步应用的瓶颈。在这项工作中,将负载石墨烯 (GP) 作为磁性纳米粒子的四氧化三铁 (Fe 3 O 4 ) 引入聚丙烯 (PP) 基质中,作为超疏水防冰/除冰表面的热载体。通过微注射成型和磁引力相结合的方法制备微结构 PP/GP/Fe 3 O 4 表面。使用多物理场耦合模型对具有磁引力的定向粒子迁移进行分析。磁引力使微柱的高度从~85 μ m 增大到~150 μ m,使表面保持较高水接触角(~153 ◦)和稳定的空气腹板,以便液滴以 1 ms-1 的初速度重复撞击。对于发育成熟的微柱,可以通过延长光路来更有效地吸收光以进行多次反射。与纯 PP 表面相比,在强度为 1 kW m-2 的一次太阳辐照下,复合材料表面的光热性能表明,温度在 67 秒内从环境温度升高到 94 ◦ C,而冰粘附强度在同期从~30 降低到~9 kPa。磁性粒子的光热功效可延长 SHS 结冰时间。由于 SHS 对室外注塑件具有出色的被动防冰和主动除冰性能,预计其将有望在制造中实际应用。
转化为电能,而很大一部分则被反射或通过热化而损失。这些废热限制了光伏系统的效率和寿命。因此,需要进一步努力来提高其寿命和效率,降低成本和能源浪费。光伏/热能混合 (PV/T) 技术可以通过有效控制光伏电池温度和提供可再生热电联产 (CHP) 将整体效率提高 80% 以上。最近的研究表明,将相变材料 (PCM) 作为被动冷却或储热介质集成到 PV/T 系统中可以提高系统性能。然而,有必要开发 PCM 中的热响应和传热以及它们与 PV/T 系统的最佳集成。该项目旨在设计和开发原型 PV/T 系统,将具有增强光热性能的复合 PCM 集成为储热和被动冷却。该项目将涉及能源材料研究,以使用碳基和金属氧化物基添加剂提高 PCM 的光热转换效率。将评估 PV/T 系统的不同配置概念,例如空气、流体和热管,以提出一种新的概念高性能 PV/T 系统。这种高性能 PV/T 将促进太阳能的更广泛利用,支持实现“净零”目标,实现供暖脱碳。该项目的创新潜力可以直接促进两个可持续发展目标:气候行动和可负担的清洁能源,并且拟议项目符合负责任创新的原则,以合乎道德和负责任的方式对社会产生积极影响。参考文献:
本文研究了一种含有纳米封装相变材料 (PCM) 和金属壳材料的创新传热流体在太阳能储热系统中的光热转换性能。研究并比较了壳厚度、芯尺寸、壳材料类型、PCM 质量和壳体积浓度对储热介质热性能的影响。结果表明,水基 Ag、Au、Cu 和 Al 纳米流体的传热速率分别为 6.89、5.86、7.05 和 6.99 W,而在纯水中添加石蜡@Ag、Au、Cu 和 Al 纳米胶囊形成的浆液分别使传热提高了 6.18%、13.38%、10.8 和 11.33%。基于金属纳米颗粒的壳材料通过增强储热介质的太阳辐射捕获能力进一步增加了温度和能量存储增益。具体而言,根据 PCM 的质量浓度,石蜡@Cu 浆料的存储容量增加了 290%。由于 Ag 颗粒的壳厚度也从 8 纳米减小到 2 纳米,它使浆料的热能存储能力增加了 7%。然而,纳米胶囊尺寸的增大导致表面积与体积比 (SA:V) 聚集,从而降低了浆料的光热转换。因此,随着核尺寸从 10 纳米增加到 40 纳米,石蜡@Cu 浆料的热能存储行为降低了 5%。此外,壳中 Al 颗粒的体积浓度的增加令人惊讶地使热能存储降低了 5%。最后,还对石蜡基固体 PCM 进行了实验测试,以验证不同风速和太阳辐射下的比热容模型。
生物材料的开发,重点是用于生物传感,光动力疗法,光热疗法,高温和成像应用的纳米材料是该组的主要重点。感兴趣的纳米材料包括金量子簇,金纳米棒,量子点,碳纳米管,碳点,氧化铁纳米颗粒,钒纳米颗粒和杂种材料。该组还针对不同的光谱技术,包括荧光,红外,拉曼和弥漫性反射光谱,以及基于化学和人工智能的基于光谱数据的分类,包括光谱图。体内和Ex Vivo光学成像,MR成像,用于成像应用和图像处理的对比剂,AI和机器学习是该组的其他主要领域。
摘要:胶质瘤具有死亡率高、术后生存率低的特点。尽管目前有多种治疗方法和分子分型,但胶质瘤的治疗失败率和复发率仍然很高。鉴于现有治疗手段的局限性,纳米技术已成为一种替代治疗选择。纳米粒子,例如聚多巴胺(PDA)基纳米粒子,具有可靠的生物降解性、高效的载药率、相对较低的毒性、较好的生物相容性、优异的黏附性能、精确的靶向递送和强的光热转换性能。因此,它们可以进一步增强胶质瘤患者的治疗效果。此外,聚多巴胺含有邻苯二酚、氨基和羧基、活性双键、邻苯二酚等活性基团,可以与含有氨基、醛基或巯基的生物功能分子发生反应(主要包括自聚合、非共价自组装、π-π堆积、静电引力相互作用、螯合、包覆和共价共组装),形成可逆动态共价席夫碱键,对pH值极为敏感。同时,PDA具有良好的粘附能力,可以进一步进行功能修饰。因此,本综述旨在总结PDA基纳米载体在胶质瘤中的应用,并深入了解载药PDA基纳米载体(PDA NPs)的治疗效果。对这些方面的深入了解和论证有望为开发更合理、更有效的PDA基癌症纳米药物递送系统提供更好的方法。最后,我们讨论了PDA在此领域未来应用的预期和一些个人观点。关键词:胶质瘤,聚多巴胺,聚合物纳米粒子,光热疗法,化疗,协同疗法
为了优化激光诱导的石墨烯(LIG)JANUS膜,本研究研究了膜孔结构,聚二甲基硅氧烷(PDMS)涂层序列以及银(AG)纳米颗粒对膜蒸馏(MD)性能的影响。这项研究旨在增强石墨烯的光热特性,同时使用固有的电导率进行同时照相和电热MD。在相同的照片和电热功率输入中操作,lig janus membrane用较小的毛孔(即闪亮的一面)处理膜面部的膜膜,可改善53.6%的透气性能,并降低特定能量的特定能量35.4%,而与膜相比,用较大的毛孔(i.e.e.e.e.e.e.e.e.e.e)来治疗膜面孔。PDMS涂层序列的效果也取决于孔结构。对于具有较小孔结构的面部,激光照射前的涂层PDM(PDMS-BLSS)与激光照射后的涂层PDMS相比,与涂层PDMS相比,磁通量的提高高达24.5%,特异性能量降低了19.7%(PDMS-ALS)。至于孔结构较大的面部,激光照射前的涂层PDM(PDMS-BLDS)导致与辐照后涂层PDMS相比,与涂层PDMS相比,通量降低高达20.8%,比能量增加了27.1%(PDMS-ALDS)。带有Ag纳米颗粒的LIG JANUS膜导致光热特性提高,将通量提高43.1 - 65.8%,并使特定能量降低15.2 - 30.5%,同时维持相似的电热热特性。进行同时进行照相和电热量MD表明,只有Ag掺杂的Janus Lig膜产生协同作用,从而使组合加热模式的通量高于在单个加热模式下运行时获得的通量的求和。
目的:多功能药物递送系统 (DDS) 正在成为一种高效治疗恶性肿瘤的新策略。本研究旨在开发一种使用天然蛋白质铁蛋白 (FRT) 和纳米级氧化石墨烯 (NGO) 作为双载体的药物双载体递送系统 (DDDS)。方法:FRT 是一种具有拆卸和重组特性的 pH 敏感空心笼蛋白,NGO 具有较大的表面积和光热效应,可以在近红外辐射 (NIR) 下装载和释放药物。由于这些独特的特性,NGO 装载了抗癌药物白藜芦醇 (RSV) 和结合的线粒体靶向分子 IR780 作为第一个药物递送平台 IR780-NGO-RSV (INR)。接下来,INR 被 FRT 封装以形成 DDDS INR@FRT,用于卵巢癌的协同光热化疗。结果:通过一系列表征,INR@FRT 表现出均匀的纳米球结构和在生理条件下显著的稳定性。证实了热/pH 5.0 可触发 INR@FRT 释放 RSV。被细胞吸收后,INR@FRT 定位到溶酶体,酸性环境触发 INR 释放。INR 靶向线粒体并释放 RSV 直接与细胞器发生反应,进而降低线粒体膜电位并导致细胞凋亡。体内实验表明,INR@FRT 联合 NIR 照射表现出显著的肿瘤抑制作用,治疗 60 天后存活率很高。最后,在体内和体外证明了 INR@FRT 的生物相容性。结论:这些结果凸显了 INR@FRT 作为一种 DDDS 在治疗肿瘤方面的巨大潜力。关键词:白藜芦醇 细胞凋亡 双载体药物递送系统 线粒体靶向性 pH/热诱发肿瘤治疗
纳米技术与医学领域的结合彻底改变了众多诊断和治疗方法,预示着精准医疗新时代的到来。纳米材料的尺寸小于 100 纳米,可在分子尺度上操纵物理、化学和生物过程 [1]。在各种纳米材料中,金属基纳米粒子因其独特性质而备受关注,例如高表面体积比、出色的光学特性和磁性,可根据特定医疗应用进行精细调整。例如,金纳米粒子已广泛用于靶向药物输送和光热疗法,利用其吸收近红外光并将其转化为热量的能力,有效摧毁癌细胞,同时对周围组织的损害最小 [2]。
摘要本评论文章概述了金纳米颗粒(AUNPS)在生物医学中的应用,重点是它们在癌症治疗,药物递送,诊断和组织再生中的使用。AuNP的独特光学特性允许光热治疗(PTT),而其柔性表面化学能够通过靶向配体和治疗剂进行功能化。广泛的研究证明了使用近红外(NIR)激光照射在各种肿瘤模型中AuNP介导的光热消融的有效性。通过具有转铁蛋白,叶酸和透明质酸等配体的AUNP平台的工程来实现主动肿瘤靶向。将AUNP与化学疗法和免疫疗法结合在一起已显示出协同的治疗益处。此外,AuNP已被广泛探索为药物和基因的携带者。通过采用刺激反应性聚合物,脂质和介孔二氧化硅,研究人员可以精确控制货物在细胞内的释放。在诊断领域,AUNP的等离子特性已被利用用于光声成像,并且在哨兵淋巴结的映射中已证明了成功的临床翻译。此外,AUNP构建体克服了与血脑屏障(BBB)相关的挑战,从而有效地向中枢神经系统(CNS)递送了挑战。在再生医学中,功能化的AUNP与生长因子结合使用时,在刺激造成骨,肌发生,血管生成和组织再生等过程中表现出显着的潜力。此外,发现它们通过免疫调节和促进血运重建来加速伤口愈合。此外,使用基于AUNP的水凝胶和支架为组织工程应用提供了至关重要的结构支持。AUNP平台的多功能性为肿瘤学,药物输送,诊断和再生疗法领域的挑战提供了有希望的解决方案。正在进行的优化工作具有将这些策略从实验室转化为临床应用的巨大希望。
1 药剂学系 1 MVP 药学院,纳西克,印度 摘要:如今,纳米技术是一个快速发展的领域。由于其出色的化学和物理特性,金纳米粒子是纳米医学领域癌症治疗的主要竞争者。在这篇评论文章中,我们首先描述了当前的癌症治疗方法及其对患者的副作用。然后介绍了使用金纳米粒子作为载体在化疗中对细胞毒药物的被动和主动靶向作用。最后,基于其独特的局部表面等离子体共振,金纳米粒子在光热和光动力疗法中的应用。 关键词 – 金纳米粒子、化疗、靶向药物输送、局部表面等离子体共振、光热疗法、光动力疗法。