作为当前项目省电探索的一部分,研究了光耦合器的替代品用于电流隔离。项目使用了大约 75 个电流隔离器,工作条件为 DC 至 1.2 Mbps。如果使用光隔离器,功耗将超过 10 瓦,还可能导致辐射引起的性能下降 [1]。为了降低功耗,对来自三家不同制造商的非光隔离器进行了评估。这种省电方式将使隔离器的总功耗从大约 10 瓦降低到不到 2 瓦。该项目的辐射要求规定,所选部件在 LET 低于 60 MeV·cm 2 /mg 时不得出现破坏性的单粒子闩锁 (SEL) 等破坏性单粒子。因此,它们最初在 NRL 的脉冲激光 SEE 测试设备上进行了破坏性 SEE 筛查。同时,还对部件进行了单粒子翻转 (SEU) 测试。经测试的三个部件中,有一个部件对 SEL 免疫,SEU 很少。该部件的重离子测试在加州大学劳伦斯伯克利分校实验室 (LBL) 88 英寸回旋加速器上进行,并证实了脉冲激光测试结果。最后,还在 NRL 的 Co 60 室中使用伽马射线对这些部件进行了总电离剂量 (TID) 测试,结果发现其可承受 50 krad(Si) 的辐射。
少数工程师率先采用调制方法,并将他们的方案应用于工业光电控制。这些工程师中包括 Banner Engineering Corp. 的 Robert W. Fayfield。1974 年,他推出了 SM500 系列调制式独立传感器和 M 系列调制式远程传感器和放大器。SM500 系列最初是为反射式代码读取而开发的,这解释了其独特的形状。多个 SM502 堆叠在 1/2 英寸中心,用于读取仓储和识别系统中的小型反光代码板。SM502 的形状变得非常流行,并且完整的 SM500(又称“扁平封装”)传感器系列在相同的压铸外壳中发展起来。SM502A 也是第一个使用可见(红色)LED 作为光源的调制光电传感器。
摘要通过极端超紫罗兰(XUV)attosecond激光脉冲对原子或分子的光电离,需要仔细考虑来自光电离过程导致的离子 +光电子纠缠程度。在这里,我们考虑通过the骨的attosent激光脉冲对中性H 2的光电离心引起的相干H 2 +振动动力学。我们表明,chi脚的激光脉冲导致离子 +光电子纠缠以及从纯状态到混合状态的过渡。这种过渡的特征是评估纯度,对于转换限制的attosent激光脉冲而言,它接近统一性,并降低到由在光电离过程中填充的振动态数确定的值,以增加chirp参数的值。在计算中,通过用短的超紫色(UV)激光脉冲计算H 2 +阳离子的时间延迟解离来探测振动动力学。独立于chirp的大小,可以通过记录XUV-UV延迟依赖性动能与随附的光电子的动能,从而恢复相干的振动动力学。
对二维材料中强相关物质的研究已成为探索冷凝物理物理学以及新型设备平台的设计的激动人心的前景。Moiré工程具有2D层具有层间扭曲角度,已被证明是工程电子相关性的强大工具。在魔术角扭曲的双层石墨烯中,石墨烯层之间的扭曲角1.1◦产生Moiré超晶格电位。平坦的电子带出现在费米水平上,其中各种相互作用驱动的多体量子相可以出现。在二维中研究强电子相关性的另一个途径是将本质相关的散装晶体剥落到原子极限中。2D HET-腐蚀中强相关系统的光电子响应是一种强大的探针,因为它可以洞悉这些系统中电子传输属性和基本的轻质 - 摩擦相互作用。在本文中,我们研究了两种密切相关的2D材料:MATBG和Cuprate超导体BI 2 SR 2 SR 2 CACU 2 O 8-δ(BSCCO-2212)。我们利用不同的光电技术来研究MATBG平面带中相关电子的基本特性,以及二维BSCCO-2212层的潜力,以用于量子传感中的应用。首先,我们通过其热电传输研究了MATBG平面带的电子光谱。我们使用光激发来诱导平面电子中的热梯度,从而产生电荷电流。我们报告了异常的热电学,这为在牢固相互互动的扁平带中局部和脱位的电子状态共存提供了有力的证据。接下来,我们使用频率分辨的光电固定技术研究MATBG扁平带中热载体冷却的动力学。引人注目的是,我们发现热载体可以有效地将能量放松到低温温度下。与双层石墨烯样品相反。我们提出了一种新型的MATBG中热载体的Umklapp Electron-Phonon散射机制,由MoiréSuperElstrattice潜力实现。最后,我们探索了基于超薄BSCCO-2212薄片的高t c的超导光电探测器的发展。我们制造的高质量样品在电信波长下表现出色。我们在自由空间和波导耦合器件中观察到在T = 77 K处的快速和敏感的辐射响应,以及通过非透明测量,雪崩检测机制在T = 20 K时在T = 20 K处观察到单光子敏感性。
摘要:二维石墨烯薄膜和石墨烯衍生物在光电应用方面有巨大的潜力,引起了广泛的兴趣。然而,提高基于石墨烯薄膜和石墨烯衍生物的光电探测器性能仍然是一个巨大的挑战。通过用垂直取向石墨烯 (VOG) 替换石墨烯薄膜,然后用石墨烯量子点 (GQDs) 功能化,在锗 (Ge) 异质结 (指定为 GQDs/VOG/Ge) 上组装一个功能性 VOG,用于近红外光探测。GQDs 和 VOG 在光吸收和电子传输方面的协同效应增强了光电探测器的性能。对 VOG 进行功能修饰是调控 VOG 费米能级、增加肖特基结的内建电势以及促进光生电子和空穴对分离的有效方法。制成的光电探测器在波长 1550 nm 处表现出优异的响应度 (1.06 × 10 6 AW − 1 ) 和探测度 (2.11 × 10 14 cm Hz 1/2 W − 1 )。对光响应的研究表明,响应速度具有微秒的上升/下降时间,并且具有优异的可重复性和长期稳定性。结果揭示了一种制造高性能石墨烯基光电探测器新结构的简单策略。关键词:GQD、垂直取向石墨烯、锗、协同效应、内置电位、光电探测器■简介
量子点(QDs)具有窄线宽发射和可调带隙,因此在量子信息和光电子器件的开发中具有潜在价值1 – 3。尤其是胶体量子点(CQDs),它可以通过溶液处理获得,并用于光伏4 – 9、光发射10 – 14和光电检测15 – 20。上转换光电探测器将低能光子(例如红外线)转换为高能光子(例如可见光),用于红外成像(图1),而红外成像用于夜视、半导体晶圆检测、手势识别、三维成像和生物成像等应用21 – 25。然而,大多数红外光子上转换器件都是基于真空或高温沉积法22、24-33,这些方法与硅等电子材料不兼容,限制了它们在柔性电子产品中的使用。基于溶液处理材料的两端上转换光电探测器已经开发出来,但需要高开启电压并且光子对光子 (p-p) 效率低(低于 1.5%)30、34。在本文中,我们表明,通过设计电子传输层 (ETL) 可以创建两端溶液处理的红外上转换光电探测器,其总 p-p 效率为 6.5%,开启电压低至 2.5 V。我们的光电探测器的效率与外延生长半导体相当,与迄今为止报道的最高增益单片红外量子点上转换器相比,效率提高了五倍。此外,与之前的量子点上变频器相比,该器件的低开启电压降低了两倍以上。我们的器件由基于硫化铅 (PbS) QD 的光电探测器吸收层(红外)和基于硒化镉/硒化锌 (CdSe/ZnS) QD 的发光二极管 (LED) 层(可见光)堆叠而成(图 2a)。为了确保光电探测器层能够提供足够的光电流来驱动 LED 层,
cu 2 o光(光电极)可以产生很高的太阳能到水(STH)效率(≈18%),[6-8],但它也容易在水溶液中的光接种,显示出非常稳定的稳定性。[9,10]这是因为Cu 2 O的氧化还原电位位于Cu 2 O的带隙内,从而使其可将其减少到Cu或氧化为CUO中,这极大地限制了Cu 2 O光电座在光电子体(PoperelectRocata-Lytic(Pec)(PEC)场中的应用。[11–15]因此,已经大量研究用于改善催化过程中Cu 2 O光阴极的稳定性。例如,可以通过原子层沉积(ALD)技术在其表面上添加缓冲层(ZnO,Ca 2 O 3)和在其表面上的protective层(tiO 2 O 3),可以通过原子层(ALD)技术在电解质溶液中的光(TiO 2 O 3)和弹性层(tio 2)进行有效缓解。[16,17]但是,由于液体过程和昂贵的设备,此方法不适合大规模生产。因此,通过结合G -C 3 N 4,[18-20] NIS,[21] FeOOH,[22,23] Cu 2 S,[24-26]和MOFS [24-26]和MOFS [27,28],通过多样化的方法(例如,替代涂料,替代涂料)组合来形成连接,还可以提高复合Cu 2 O 2 O光阴极的稳定性。为了进一步提高Cu 2 O光电的光稳定性,需要通过可重复的过程和技术开发一些更有效的保护层材料。据报道,切断光电剥离和电解质溶液之间的反应可以有效抵抗其光腐蚀。此外,明显提高了Cu 2 O[29–31]铜苯乙酰基(pHCCCA)是一种新报道的金属有机聚合物半导体,具有出色的照片/热稳定性,可见光的光反应和高电子孔孔对分离效率。[32–36]最重要的是,它还显示出强的疏水性,静态水接触角为131.2°。[37]通过报道的光热方法,[16]高质量的pH c c c c cu Cu保护层被成功地自组装在Cu 2 O 2 O光(图1)的表面上(图1),有效地抑制了其光腐蚀,通过与电解液和O 2中的O 2分开其光腐蚀。在长期PEC实验后,通过构造的pH phcc cu/cu/cu 2 o光电座获得的稳定光电流密度显示出其出色的光稳定性,这也由稳定的晶体结构,形态和cu的价位证明。
虽然如果没有空间动力学实验室 (SDL)、国家标准与技术研究所 (NIST)、美国国家航空航天局 (NASA)、美国国家海洋与大气管理局 (NOAA)、航空航天公司 1、前沿技术公司 (FTI)、美国地质调查局 (USGS)、阿拉巴马大学亨茨维尔分校 (UAH) 和南达科他州立大学 (SDSU) 的一定程度的机构支持,本出版物不可能出版,但这项工作主要归功于作者的努力。乔·坦索克 (Joe Tansock) 尤其如此,他带头协调工作、布置任务、编写特定部分、编辑和整合所有内容。作者非常感谢 SDL 的 Peg Cashell 为本文档提供技术写作和编辑专业知识。
太阳能是一种无污染的清洁能源,取之不尽,用之不竭。它不仅是近期急需的能源补充,也是未来能源结构的基础。就太阳能资源而言,太阳光密度低,照射时间间隔和空间分布都在不断变化。目前,大多数太阳能聚光器都是固定的。但光线的方向和强度都是不断变化的。这样太阳能资源就得不到充分利用,效率低下。因此,需要采用光敏电阻跟踪太阳,使系统的光照面垂直于太阳光的入射方向。这样,在有限的使用面积内,可以截取更多的输入辐射,达到太阳能的最大吸收状态。从而提高太阳能的利用效率,增加太阳能系统的应用价值[1] 。