抽象的金属氧化物太阳能吸收剂非常适合光电化学应用,在该应用中,必要的特性还包括在高度氧化环境中的稳定性,除了太阳能转化。金属杂质特别关注的是,由于其相对较低的带隙能量与传统的宽间隙光催化剂相比。基于BIVO 4的光轴的共同努力揭示了多种途径,用于提高高于2.5 eV的光子能量的太阳转换效率,但尚未解决不可思议的高带隙能的最终性能限制。fe和cr杂质具有较低的带隙,因此具有较高的潜在太阳转换效率,尽管迄今为止,吸收的2-2.5 eV光子未有效地转换为所需的阳极光电流。通过使用组合合成和高吞吐量筛选,我们证明了用单斜晶MVO 4相(M = Cr,Fe)取代了该能量范围内光子的利用率。鉴于可用的光阳极改进技术组合,我们建议优化(Cr 0.5 Fe 0.5)基于VO 4的光轴,这是启用太阳能燃料技术的有希望的路径。
我们报告了在零偏压下工作的光电探测器的高速性能——零暗电流和零直流电功耗。光电流的产生是通过嵌入硅锗的硅微环谐振器中的声子辅助吸收实现的,在波长约 1180 和 1270 nm 处分别产生 0.35 和 0.043 A/W 的响应度。我们测量了 14 GHz 的 3 dB 带宽,这是迄今为止报告的零偏压环谐振光电探测器的最快带宽,比之前的工作提高了 7 倍。我们通过 TCAD 模拟探索了这种改进的来源,并得出结论:掺杂分布的优化通过限制光生载流子漂移到谐振器外周的影响,在低电场下显著缩短了有效载流子寿命。利用实验数据,我们还提取了自由载流子和声子辅助硅锗吸收系数,结果与文献数据吻合良好。还展示了在高达 150 ○ C 的温度下的高速运行。© 2021 作者。除非另有说明,否则所有文章内容均根据知识共享署名 (CC BY) 许可证获得许可 (http://creativecommons.org/licenses/by/4.0/)。https://doi.org/10.1063/5.0047037
图2 |横截面示意图,SEM图像和I-V特征的特征。a,示意图。B植入物用于在GE中创建P接触区域(最深的蓝色),P植入物用于在Si中创建N-Contact区域。SI中的其他B植入物形成GE以下的两个区域,一个作为电荷层(较轻的蓝色),一个作为筛选层(较深的蓝色)。Si中的其他P植入物形成了埋入的SIO 2上方的深N孔区域,以及N-Contact区域和深N-Well区域之间的N-链接区域。b,SEM图像。图像被捕获,对应于图中的黄色虚线包围的黄色区域2(a)。请注意,PT,即白色的共形层,在设备上沉积以避免使用SEM充电。c,d,光电流(实心曲线)和暗电流(虚线曲线)及其相应的增益,绘制为S1(蓝色)和S2(红色)的施加电压的函数。由参考PD的照片电流确定,图。2(c)和图中的统一增益点2(d)分别通过蓝色和红色点缀的圆圈标记和标记。
我们报告了在零偏压下工作的光电探测器的高速性能——零暗电流和零直流电功耗。光电流的产生是通过嵌入硅锗的硅微环谐振器中的声子辅助吸收实现的,在波长约 1180 和 1270 nm 处分别产生 0.35 和 0.043 A/W 的响应度。我们测量了 14 GHz 的 3 dB 带宽,这是迄今为止报告的零偏环谐振光电探测器的最快带宽,比之前的工作提高了 7 倍。我们通过 TCAD 模拟探索了这种改进的来源,并得出结论:掺杂分布的优化通过限制光生载流子漂移到谐振器外周的影响,在低电场下显著缩短了有效载流子寿命。利用实验数据,我们还提取了自由载流子和声子辅助硅锗吸收系数,结果与文献数据吻合良好。还展示了在高达 150 ○ C 的温度下的高速运行。© 2021 作者。除非另有说明,否则所有文章内容均根据知识共享署名 (CC BY) 许可证获得许可 (http://creativecommons.org/licenses/by/4.0/)。https://doi.org/10.1063/5.0047037
在钙钛矿光电探测器中产生的光电流(I pH)的频率响应是成像或电信应用中的关键问题,尽管文献中讨论了它。目前的工作是在第一次获得MAPBI 3(MA:甲基氨基)perovskite perovskite polycrystalline薄膜上产生的I pH的完整表达。条件电路用于在平方调节激发激励下的1 V处提取I pH,其灵敏度小于1 nW,线性动态范围LDR> 200 dB;它允许准确确定I pH的模块以及相位,这通常在光电探测器系统中不报告。频域分析表明,I pH可以通过位于低(10 kHz)和高(39-250 kHz)切割频率的两个分数极点进行建模。最佳的几何参数和激发功能是针对更广泛的响应发现的,从而在最高250 kHz的速率上获得了最佳设备,并在高达100 kHz的方形光波的繁殖中繁殖。这些结果代表了对MAPBI 3(或其他钙钛矿材料)进行电气分析的重要策略,以设计后电子阶段,优化设备的优化并确定其功绩。
本文介绍了合成,晶体生长,检测器制造,辐射硬化研究,MCNP建模以及二依依氏锂或Inse 2的表征。这个新开发的室温热中子检测器具有半导体和闪烁的特性,适用于中子检测应用。liinse 2是从元素li开始合成的,由于Li的高反应性,分为两个步骤。使用垂直Bridgman方法生长了一个含Iinse 2的单晶。使用光吸收测量值发现室温带隙为2.8 eV。散装电阻率。光电导率测量2晶片的光电识别在445 nm左右的光电流中。核辐射探测器是用单晶晶片制成的,并测量了各种偏见的α颗粒的响应。估计了千篇一律的产物。γ辐照研究的吸收剂量范围为0.2126至21,262 Gy。在每次辐照后都进行了两个晶圆的表征。γ辐射产生的光产率降低,这转化为alpha检测光谱质心的较低通道数。它也显示出第一次辐照后的衰减时间大大减少。这些是对这种材料进行伽马辐射硬化的第一批研究。
Photoelectrochemical Water Splitting Using Cuprous Oxide (Cu 2 O)-Based Photocathode – A Review Yerbolat Magazov, 1, 2 Asset Aliyev, 1 Kuanysh Moldabekov, 1 Aliya Kurbanova, 1, 2 Assel Rakymbekova, 2 Magzhan Amze, 2 Niyazbek Ibrayev 3 and Vladislav Kudryashov 2,*摘要在这里,我们介绍了在氧化乡土(Cu 2 O)基于氧化浓缩层(CU 2 O)基于光电油化学水分的基础上所取得的进展和瓶颈的关键小型审查,并特别关注与Unbonversion材料,光伏系统和PhotoAnodes,用于Unbiase diasas tandandem dectections的集成。cu 2 O光(光电座)具有吸引人的特性,使其成为一个吸引人的选择,包括合适的带隙,低成本处理,以及在理论极限上高达18%的太阳能至氢效率的潜力;但是,它们的广泛应用受到光腐蚀,低光电流和光吸收不良的限制。这些系统在太阳能驱动的氢生成中展示了这些挑战的解决方案,例如添加上转材料以增加吸收光谱和串联构型,以进行光伏和整体效率。它突出显示了这种类型的细胞的紧凑和模块化特征,同时审查其设计原理,材料策略,性能指标以及与可再生氢生产的大规模混合。
抽象过渡金属二甲化合物(TMD)分层半导体在光子,电子,光电和传感器设备的设计中具有巨大的潜力。然而,从近红外(NIR)到短波长红外(SWIR)的TMD的子频率光吸收不足以超出带隙极限。在此,我们报告说,MOS 2 /AU异质结构的子频率光响应可以通过所采用的电极制造方法进行牢固调节。我们在MOS 2 /AU异质结构中观察到多达60%的亚带gap吸收,其中包括杂交界面,其中通过溅射沉积应用了AU层。sub-Bandgap光的吸收大大增强是由于MOS 2和AU形成的平面腔。因此,可以通过改变MOS 2层的厚度来调整吸收光谱。在SWIR波长范围内的光电流增加,由于吸收增加而增加,这意味着可以从可见到SWIR的宽波长检测。我们还以1550 nm的激发波长达到了快速的光响应(〜150 µs)和高响应性(17 mA W -1)。我们的发现展示了一种使用金属电极工程的光学性质调制方法,并在宽带2D材料中实现SWIR光电进行。
摘要:石墨烯/硅异径光电探测器由于高表面状态和界面处的低屏障高度而遭受高黑暗电流,这限制了它们的应用。在这项研究中,我们通过磁控溅射引入了HFO X界面层以解决此问题。使用这种新结构,在偏置电压为-2 V的情况下,暗电流降低了六次。在460 nm的照明下,响应性为0.228a/w,检测率为1.15×10 11 cmHz 1/2 w -1,噪声等效的功率为8.75×10-5 pw/hz 1/2/2/2/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/2/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/hz 1/2/2/2/hz 1/2/2/hz 1/2/2/hz 1/2/hz 1/2/2/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/2/hz。此外,HFO X界面层中的氧空位为电荷载体提供了导电通道,导致光电流增长2.03倍,外部量子效率为76.5%。光电探测器在低偏置电压下保持良好的光响应能力。这项工作展示了HFO X膜作为界面层材料的出色性能,并为高性能光电探测器提供了新的解决方案,以及提高太阳能电池光伏转换效率的新途径。
光伏 (PV) 能量收集已广泛应用于电池充电的能量存储应用中。收集电路有效收集的太阳能越多,充电效率就越高。许多论文使用了不同的 MPPT 方法来增强 PV 收集,这些方法需要 ADC 和 MCU,这不仅成本高昂,而且需要长时间的跟踪。提出了一种用于 20V/5 W 太阳能电池板的具有自适应恒流 (ACC)、恒压 (CV) 和最大功率跟踪 (MPPT) 控制的高压能量收集电路,用于在太阳能电池板的最大功率点变化时对锂离子电池进行恒流充电 (CC) 和恒压 (CV) 充电模式。在不同光强度条件下实施脉冲宽度调制 (PWM) 和脉冲频率调制 (PFM) 以提高效率。由扰动观察 (PBO) MPPT 算法控制的 ACC 模式提高了光源不足或电池电量低时的效率。当电池充满电时,激活 CV 模式可防止锂离子电池过度充电损坏。该能量收集电路采用台积电0.5μm超高压工艺制作,在0.1A~0.3A光电流范围内,该设计的峰值效率达到98%。