摘要:最近通过自组装定义的纳米颗粒形成自支持的网络,所谓的Aerogels的宏观材料。以这类材料的有前途的特性动机,搜索通往前聚合的纳米颗粒的多功能路线进入这种超轻宏观材料已成为极大的兴趣。用多功能物的胶体纳米颗粒的过度涂料程序意味着从纳米颗粒中产生气凝胶,无论其大小,形状或性能如何,同时保留其原始特性。在此,我们报告了各种构件的表面修饰和组装:光致发光的纳米棒,磁性纳米球和等离激元纳米管,粒径在5到40 nm之间。用于涂层的聚合物是用1多二烷胺侧链修饰的聚(异丁基 - 甲基甲基酸酐)。聚合物的两亲性促进了水性介质中纳米晶体的稳定性。水凝胶是通过触发胶体稳定的溶液来制备的,水阳离子在聚合物壳的官能团之间充当接头。超临界干燥后,水凝胶成功地转化为具有高度多孔,开放结构的宏观气凝胶。由于非侵入性制备方法,构建块的纳米镜特性保留在整体气凝胶中,从而导致这些特性强大地传递到宏观上。关键字:纳米颗粒,气凝胶,聚合物涂层,相转换,多功能合成方法■简介开放的孔系统,聚合物涂层策略的普遍性以及网络的巨大可访问性使这些凝胶结构有望有希望的生物传感平台。用生物分子功能化聚合物壳可以使利用构建块的纳米镜头特性的可能性渗透到流化的探测,磁性感应感和等离激元驱动的热传感。
与传统的非线性光学晶体(如BAB 2 O 4,KTIOPO 4或LINBO 3)相比,光子对的半导体集成源可能会在泵波长上运行。Bragg反射波导(BRW)的情况也是这种情况,将参数下转换(PDC)靶向电信C波段。藻类合金的大型非线性系数和光的强限制可实现极明亮的集成光子对源。在某些情况下,在BRW中观察到了大量有害的宽带光致发光。我们表明,这主要是由于核心附近线性吸收以及随后在半导体中深杂质水平的电子对辐射重组的结果。对于带有BRW的PDC,我们得出结论,在S波段的长波长端或短C波段附近运行的设备需要短的时间滤波,需要短于1 ns。我们预测,将工作波长转移到L波段会将光致发光量减少70%,并在材料组成中进行少量调整会导致其总还原90%。这样的措施使我们能够提高平均泵功率和/或重复率,这使得积分的光子对源具有芯片多吉格希氏兹对速率的可行,用于将来的设备。
可再生能源的未来依赖于发现用于高密度储能的新材料。1 由于其多功能性、高极化电位和介电常数,铁电 (FE) ABO 3(A、B = 各种金属离子)钙钛矿是电容器技术中一类受欢迎的材料。2、3 PbTiO 3 和类似的钙钛矿基电容器由于 A 位 (Pb) 与 O 的偏心杂化而表现出出色的能量存储密度。3 然而,Pb 的毒性限制了它们的商业使用,因此需要无铅 FE 替代品。4 遗憾的是,由于 BO 6 八面体旋转/倾斜的反铁电畸变 (AFD) 畸变,导致中心对称 Pnma 空间群的优先稳定,室温下无铅 ABO 3 钙钛矿中的 FE 不稳定性受到抑制。 5 缺陷工程(Ca 掺杂、氧空位等)已被有效利用,通过修改 ABO 3 钙钛矿中的局部 A/B 位对称性来克服这些 AFD 畸变。6 传统上,
刺激响应性纳米平台的结构和特性对环境因素敏感,可用于按需释放药物到病理部位。1 然而,由于人体生理的复杂性,使用响应生理刺激(即 pH、酶和还原剂)的纳米粒子精确控制药物释放仍然具有挑战性。为此,已经开发出各种响应外部刺激(即光、超声波、电场和磁场)的药物输送系统 (DDS)。2 其中,光响应系统脱颖而出,因为光能够以高时空分辨率对目标释放进行远程和非侵入性控制。3,4 通常外部光用于影响光敏部分的化学结构和/或极性,例如偶氮苯、5 螺吡喃 6
硅光子学产业的快速发展有望带来非电子技术前所未有的制造经济。除了大批量生产的潜力之外,硅光子学还为大规模光子处理架构开辟了可能性,而这在光纤或 III-V 族平台中是无法想象的 [1、2、3]。所有光子系统都需要光源。由于硅具有间接带隙,因此在室温下不易发光。因此,硅光子学的大部分研究都使用与光纤耦合的片上外部光源。使用外部光源会带来光纤封装和光纤到芯片插入损耗的巨大负担。人们已经投入了大量研究来开发用于硅光子的集成光源 [4]。每种方法都有优点和缺点。这些方法包括稀土元素掺杂(低亮度)、III-V 量子阱的晶圆键合 [ 5 ](非单片集成步骤)、III-V 量子点的外延生长 [ 6 ](专门的外延步骤)和锗的带隙工程 [ 7 ](低屈服应变工程)。所有这些方法
光是一种能量形式,其行为可以用波和粒子的性质来描述。电磁辐射的某些性质,例如它从一种介质传播到另一种介质时的折射,可以通过将光描述为波来得到最好的解释。其他性质,例如吸收和发射,最好将光视为粒子来描述。自 20 世纪前 25 年量子力学发展以来,电磁辐射的确切性质仍不清楚。尽管如此,波和粒子行为的双重模型为电磁辐射提供了有用的描述。1.1 发光发光是一门与光谱学密切相关的科学,光谱学是研究物质吸收和发射辐射的一般规律。自古以来,海洋和腐烂有机物中的细菌、萤火虫和萤火虫等发光生物的存在就让人类既困惑又兴奋。对发光这一主题的系统科学研究始于 19 世纪中叶。 1852 年,英国物理学家 GCStokes 发现了这一现象,并提出了发光定律,即现在的斯托克斯定律,该定律指出发射光的波长大于激发辐射的波长。1888 年,德国物理学家 E. Wiedemann 在文献中引入了“发光”(弱辉光)一词。某些物质吸收各种能量后发光而不产生热量的现象称为发光。发光是在各种激发源下获得的。发射光的波长是发光物质的特性,而不是入射辐射的特性。发光系统不断消耗能量来驱动发射过程。通用术语“发光”包括各种各样的发光过程,这些过程的名称源于为其提供动力的各种能量。光致发光包括荧光和磷光,是众多发光类别之一。为了说明发光的多样性,下面介绍一些最常见的发光类型:1. 电致发光:电流通过电离气体时产生。例如气体放电灯。2. 放射性发光:从放射性衰变释放的高能粒子中获取能量。例如发光的镭表盘。3. 摩擦发光:源于希腊语 tribo,意为摩擦。当某些晶体受到压力、挤压或破碎时,就会发出这种发光。例如某些类型的糖晶体。4. 声致发光:在暴露于强声波(压缩)的液体中产生这种发光。5. 化学发光:从化学反应中获取能量。化学键的断裂提供了能量。
本文详细研究了通过金属有机化学气相沉积生长的 GaN ~ 1 nm ! /Al 0.2 Ga 0.8 N ~ 3.3 nm ! 20 周期超晶格的光致发光 ~ PL !。在低温状态下,PL 发射能量、线宽和强度对温度的依赖性与涉及带尾态的复合机制相一致,该复合机制归因于少量界面无序。我们超晶格中非辐射中心的活化能与我们得出的尾态分布宽度值非常吻合。此外,我们发现,在高温下控制带间 PL 能量的声子的平均声子能量对于超晶格来说比对于高质量 GaN 薄膜来说更大。这一观察结果与预测 GaN-AlN 基纤锌矿异质结构声子模式特性的模型计算结果一致。© 2000 美国物理学会。 @S0003-6951〜00!00915-3#