目前的 Cas9 试剂可以高度特异性地靶向基因组位点。然而,当用于敲入时,靶向结果本质上是不精确的,通常会导致非预期的敲除而不是预期的编辑。这将基因组编辑的应用限制在离体方法中,其中可能进行克隆选择。在这里,我们描述了一种使用迭代高通量体外和高产量体内测定的工作流程,以评估和比较 CRISPR 敲入试剂在编辑效率和精度方面的性能。我们测试了 Cas9 和 DNA 供体模板变体的组合,并确定 Cas9-CtIP 与原位线性化供体在细胞系和小鼠脑体内显示出成倍的编辑精度增加。通过迭代此过程,我们生成了新的化合物融合,包括 eRad18-Cas9-CtIP,其性能进一步成倍增加。继续利用该平台开发精确编辑试剂有望在模型生物中直接进行体内敲入,并有望用于未来的靶向基因疗法。
雌激素受体 α (ESR1) 基因的配体结合域 (LBD) 获得性突变是转移性 ER + 乳腺癌患者内分泌疗法耐药的常见机制。尤其是 ESR1 Y537S 突变与大多数用于治疗乳腺癌的内分泌疗法产生耐药性有关。通过对近 1,200 种美国联邦药物管理局 (FDA) 批准的药物进行高通量筛选,我们发现溴结构域和末端外结构域 (BET) 抑制剂 OTX015 是 ESR1 突变细胞生长的主要抑制剂之一。OTX015 在抑制 ESR1 突变异种移植生长方面比选择性 ER 降解剂氟维司群更有效。与 CDK4/6 抑制剂 abemaciclib 联合使用时,OTX015 诱导的肿瘤消退效果比目前标准治疗方案 abemaciclib + 氟维司群更有效。OTX015 对 Y537S 突变乳腺癌细胞具有优先活性,并在与 WT 细胞的竞争研究中阻止了它们的克隆选择。因此,BET 抑制有可能预防和克服乳腺癌中 ESR1 突变引起的内分泌治疗耐药性。
b) 阐明肿瘤微环境 (TME) 细胞生态系统中的串扰。几项使用下一代测序的遗传景观研究已几乎完整地描述了转录定义的 DLBCL 亚型(如细胞源分类)背景下最常见的体细胞基因改变和结构基因组变化 (4–7)。然而,人们对 DLBCL 的免疫生物学知之甚少,这反映在对免疫系统压力的反应中特定体细胞基因突变的克隆选择和 TME 的特定组成。DLBCL 的 TME 主要由非恶性免疫细胞组成,例如 T 细胞、NK 细胞、巨噬细胞和基质细胞。最近的研究表明,TME 在肿瘤细胞维持、免疫逃逸和治疗失败中起关键作用 (8, 9)。鉴于激活免疫效应细胞对消除癌症的重要性,许多免疫疗法,如程序性细胞死亡 1 (PD-1) 阻断、嵌合抗原受体 (CAR) T 细胞和 T 细胞结合抗体,已在多种癌症(包括淋巴瘤)中得到评估并获得 FDA 批准 (10–13)。然而,对免疫生物学的深入了解可以导致开发更具特异性的治疗方法,并可以指导合理的
摘要 ◥ 人们在骨肉瘤中进行了多项大规模基因组分析,以确定肿瘤发生、治疗反应和疾病复发的基因组驱动因素。肿瘤内空间和时间的异质性也可能在促进肿瘤生长和治疗耐药性方面发挥作用。我们对 8 名复发或难治性骨肉瘤患者的 37 个肿瘤样本进行了纵向全基因组测序。每位患者至少有一个来自原发部位和转移或复发部位的样本。除一名患者外,所有患者均发现了亚克隆拷贝数变异。在 5 名患者中,来自原发性肿瘤的亚克隆出现并在随后的复发中占主导地位。在 7 名具有多个克隆的患者中,6 名患者的治疗耐药性克隆中 MYC 增益/扩增富集。在耐药拷贝数克隆中还观察到了其他潜在驱动基因(如 CCNE1 、 RAD21 、 VEGFA 和 IGF1R )的扩增。染色体重复时间分析显示,复杂的基因组重排通常发生在诊断之前,支持宏观进化的进化模型,其中大量基因组畸变在短时间内获得,然后进行克隆选择,而不是持续进化。复发性肿瘤的突变特征分析表明,同源修复缺陷 (HRD) 相关的 SBS3 在每个
摘要 :结直肠癌 (CRC) 是一种异质性疾病,治疗难度较大,而多种分子变异的普遍存在使标准化疗和靶向药物产生耐药性,使得治疗更加复杂。已在表皮生长因子受体 (EGFR) 通路的多个层面上发现了耐药机制,包括 KRAS、NRAS 和 BRAF V600E 以及 HER2 和 MET 受体的突变。这些变异代表致癌驱动因素,可能通过克隆选择过程与其他原发性和获得性变异共存于同一肿瘤中。其他分子变异包括 DNA 损伤修复机制和罕见的激酶融合,可能为新的治疗策略提供理论依据。近年来,通过对表观基因组、转录组和微环境特征进行更复杂的研究,基因组分析得到了扩展。共识分子亚型 (CMS) 分类描述了四种具有不同生物学特征的 CRC 亚型,这些亚型在临床环境中具有预后和潜在预测价值。在这里,我们回顾了 CRC 中可操作目标的全景,以及最新分子测试的发展,例如液体活检分析,这些测试越来越多地为临床医生提供一种手段,确保根据转移性 CRC 患者不断变化的分子特征和治疗历史,为其提供最佳的定制治疗。
CRISPR 相关核酸酶是精确编辑模型系统(包括人类类器官)基因组的有力工具。目前描述类器官中荧光基因标记的方法依赖于 DNA 双链断裂 (DSB) 的产生,以刺激同源定向修复 (HDR) 或非同源末端连接 (NHEJ) 介导的所需敲入整合。DSB 介导的基因组编辑的一个主要缺点是需要克隆选择和扩增候选类器官以验证目标基因座的基因组完整性并确认没有脱靶插入/缺失。相比之下,基因组位点和靶向载体的同时切口,称为反式配对切口 (ITPN),可刺激有效的 HDR 介导的基因组编辑以产生大量敲入而不会引入 DSB。在这里,我们表明 ITPN 可以在人类正常和癌症类器官中实现快速、高效且无插入/缺失的荧光基因标记。为了突出 ITPN 的简便性和效率,我们生成了三重荧光敲入类器官,其中 3 个基因组位点在单轮靶向中同时被修改。此外,我们通过一步差异化修改母系和父系等位基因,生成了具有等位基因特异性读数的模型系统。ITPN 使用我们的靶向载体调色板(可从 Addgene 公开获得),非常适合在人类类器官中生成无错误的杂合敲入。
1. 引言:植物育种的定义、范围和目标。2. 作物的起源和驯化:作物起源中心、这一概念在植物育种中的重要性、作物的驯化。3. 植物遗传资源:种质的定义、收集、评估和保存(离体和就地),种质在植物育种计划中的应用。4. 生殖生物学和植物育种:作物的繁殖方式、植物改良中的授粉机制、自交不亲和性和雄性不育性及其在植物育种中的意义。5. 自花授粉和异花授粉作物的选择方法以及无性繁殖植物的克隆选择。6. 杂交:目标;杂交技术和类型以及人工杂交的重要性。7. 自花授粉和异花授粉作物的育种技术:大规模选择、纯系选择、谱系选择和批量方法的方法、优点和缺点。 8. 杂种优势育种:杂种优势、杂种优势和近交衰退的介绍,杂种优势的遗传基础,通过杂种优势育种取得的成果。9. 诱变育种:诱变育种介绍,植物诱变的人工诱导,诱变技术在作物改良中的应用,诱变育种的局限性。10. 回交育种:回交育种的方法、优点和局限性。11. 抗逆育种:逆境类型 - 生物和非生物,抗病育种方法,
2024年7月30日(安大略省多伦多) - 细胞系公司Lineabio今天宣布启动其现成的诱导多能干细胞(IPSC)线路目录。根据良好的制造实践(GMP)制造的现成的IPSC线路将通过将时间加速到GMP增加12个月,并使细胞系开发成本降低60%,从而使细胞疗法开发人员能够促进细胞疗法开发人员。“与Lineabio的细胞系目录区别的是质量和透明度,” Lineabio首席执行官Mark Curtis说。“利用既定平台和IPSC专家团队,我们的IPSC系列都是从头到尾都符合GMP的制造,而没有妥协。通过为使用该机芯的行业访问用于药物制造的现成的IPSC线路,Lileabio的细胞系目录将有助于治疗开发人员削减GMP重新编程的成本和加速时间表,从而增加更多细胞治疗药物的可能性,以帮助患者提供诊所的需求。” Lineabio是由IPSC能力和平台开发的全球领导者CCRM以及以技术为中心的细胞和基因治疗临床和商业合同开发与制造组织(CDMO)创立的lineabio的专有GMP IPSC系列基于在CCRM上磨练的十多年的IPSC平台专业知识,其中包括重新编程200+ IPSC系列,其中许多是根据GMP符合GMP的客户研究新药(IND) - 增强的研究。此外,与Omniabio的隶属关系为开发人员提供了一条无缝的途径,可以通往主体和工作细胞库的制造,过程和分析开发,最终是临床和商业GMP药物。lineabio的IPSC系列使用一个平台,其中包括重新编程,克隆选择和银行业务,并使用具有完整可食性的GMP试剂符合GMP。LILEABIO将于8月推出其首个专有GMP IPSC系列,该产品将由今年提交的美国FDA药物主文件提供支持。