免疫疗法是当今抗击癌症的一种关键且有利的治疗方法。尤其是免疫检查点抑制剂,已得到广泛应用,并在各种恶性肿瘤中取得了突破性的治疗效果。然而,其在卵巢癌中的疗效并不令人满意。大量无反应率这一迫切问题需要立即引起关注。寻求新靶点和制定协同联合治疗方法对于应对这一挑战至关重要。B7-H4 是 B7 家族共抑制分子的成员,在卵巢癌中表现出高表达水平,与肿瘤进展、耐药性和不良预后密切相关。B7-H4 有可能成为评估患者免疫反应的宝贵生物标志物。最近针对卵巢癌免疫治疗背景下的 B7-H4 的研究和临床前试验凸显了其作为一种有前途的免疫治疗靶点的出现。本综述旨在讨论这些发现并预测 B7-H4 在卵巢癌免疫治疗和靶向治疗中的未来前景。
乳腺癌 (BC) 是最常见的非皮肤癌,也是美国女性癌症死亡的第二大原因。乳腺癌的发生和发展可以通过遗传和表观遗传变化的积累来进行,这些变化使转化细胞能够逃脱正常的细胞周期检查点控制。与核苷酸突变不同,DNA 甲基化、组蛋白翻译后修饰 (PTM)、核小体重塑和非编码 RNA 等表观遗传变化通常是可逆的,因此可能对药物干预有反应。表观遗传失调是抗肿瘤免疫力受损、免疫监视逃避和免疫疗法耐药的关键机制。与黑色素瘤或肺癌等高度免疫原性的肿瘤类型相比,乳腺癌被视为免疫静止肿瘤,其肿瘤浸润淋巴细胞 (TIL) 数量相对较少、肿瘤突变负荷 (TMB) 较低,对免疫检查点抑制剂 (ICI) 的反应率适中。新兴证据表明,针对异常表观遗传修饰因子的药物可能通过几种相互关联的机制增强 BC 中的宿主抗肿瘤免疫力,例如增强肿瘤抗原呈递、激活细胞毒性 T 细胞、抑制免疫抑制细胞、增强对 ICI 的反应以及诱导免疫原性细胞死亡 (ICD)。这些发现为使用表观遗传药物与免疫疗法的组合方法作为改善 BC 患者预后的创新范例奠定了非常有希望的基础。在这篇综述中,我们总结了目前对表观遗传修饰因子如何发挥作用的理解
全身治疗仍然是晚期肝细胞癌 (HCC) 的主要治疗方法。尽管如此,其在控制肝内病变方面的疗效有限。肝动脉灌注化疗 (HAIC) 是一种将局部治疗与全身抗肿瘤作用相结合的治疗方法,旨在有效控制肝脏内癌性病变的进展,尤其是对于门静脉肿瘤血栓形成 (PVTT) 患者。将 HAIC 与抗程序性细胞死亡蛋白 1 (抗 PD-1) 单克隆抗体 (mAb) 免疫疗法相结合有望成为一种新型治疗方法,旨在增强局部肿瘤部位内的反应并实现延长生存期的优势。为了评估各种治疗方式的有效性、安全性和适用性,并解决 HAIC 增敏免疫疗法疗效的潜在分子机制,我们回顾了有关 HAIC 与抗 PD-1 mAb 疗法相结合的文献。
最重要的是在T细胞表面上的CD28共刺激分子和在抗原呈递细胞上的CD80分子的组合(10)。在T细胞激活的双重信号传导系统中,CD28激活的不存在导致过度激活诱导的细胞死亡(AICD)。然而,在CD80与CD28结合后,可以避免T细胞的AICD,从而导致T细胞的耐用抗肿瘤活性(11)。此外,CD80和CD28的组合还可以增强T细胞的细胞因子(例如IL-2)的分泌。此外,它可以增强CD4+ T细胞的增殖以及CD4+和CD8+ T细胞的细胞毒性活性(4)。最近的研究表明,共刺激分子CD28对T细胞的活性不足会导致T细胞的抗肿瘤活性降低(12)。然而,随着CD28激活信号的增加,T细胞的抗肿瘤活性得到了增强(13,14)。因此,通过CD80在T细胞表面的CD28分子激活可能会提高T细胞对实体瘤的杀伤效率,从而提供一种新的免疫疗法方法。
三阴性乳腺癌 (TNBC) 是一种高度侵袭性的乳腺癌,包含几种不同的亚型。免疫疗法的最新进展为治疗这些高度异质性且易于转移的肿瘤提供了光明的未来。尽管取得了进展,但免疫疗法的疗效仍然有限,如 PD-L1 生物标志物的疗效未得到改善以及患者获益有限。为了提高 TNBC 免疫疗法的疗效,我们对 TNBC 的微环境和相应的治疗干预进行了研究,并建议进一步研究以识别可以促进 TNBC 亚型的其他生物标志物,以便更有针对性的治疗方法。TNBC 是一种高度侵袭性的亚型,由于缺乏传统内分泌和靶向治疗的机会,长期生存率惨淡。免疫疗法的最新进展显示出希望,但由于异质性肿瘤微环境和治疗耐药性的发展,尤其是在转移性病例中,反应率可能有限。在本综述中,我们将研究 TNBC 的肿瘤微环境和相应的治疗干预措施。我们将总结目前 TNBC 免疫治疗的亚型划分策略和可用的生物标志物,特别强调需要进一步研究以确定其他预后标志物并针对特定 TNBC 亚型改进定制疗法。这些努力旨在提高治疗敏感性并最终提高晚期 TNBC 患者的生存率。
居住的记忆T细胞(T RM细胞)已成为黑色素瘤和其他实体瘤抗肿瘤免疫的有趣研究主题。在抗肿瘤免疫的初始阶段,它们保持免疫平衡,并防止肿瘤细胞和原发性黑色素瘤形成的挑战。在转移性环境中,它们是免疫检查点抑制(ICI)的主要靶细胞群体,因为它们高表达抑制性检查点分子,例如PD-1,CTLA-4或LAG-3。一旦用ICI治疗黑色素瘤患者,居住在肿瘤中的T RM细胞就会重新激活并扩展。肿瘤杀死是通过分泌效应子分子(例如ifng g)来实现的。但是,还观察到脱靶效应。免疫相关的不良事件,例如影响皮肤等屏障器官的不良事件,可以通过ICI诱导的T RM细胞介导。因此,对这种记忆T细胞类型的详细理解是必须更好地指导和改善免疫疗法方案。
免疫细胞功能,增加肿瘤对免疫治疗的敏感性(6,7)。小分子抑制剂利用其免疫调节特性,可以优化治疗结果,改善患者反应,为推进癌症治疗提供新的机会(8)。在癌症免疫治疗中,使用小分子抑制剂作为佐剂的概念涉及利用这些药物的免疫调节作用来增强免疫治疗的有效性。例如,小分子抑制剂可以调节肿瘤微环境,增强免疫细胞功能,增加肿瘤对免疫治疗的敏感性,并获得更好的治疗结果(9-11)。在癌症治疗中使用小分子抑制剂作为佐剂是一个快速发展和扩大的领域。通过研究小分子抑制剂如何与免疫疗法相互作用,优化治疗方案,预测患者对治疗的反应,可以为未来的癌症治疗提供更多的机会和改进。在这篇综合评论中,我们深入探讨了小分子抑制剂作为癌症免疫治疗辅助剂的不断发展的作用,探索了它们的作用机制、临床应用以及改善治疗结果的潜力。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
除了免疫检查点抑制剂的快速发展,自组装免疫治疗药物的研发也呈现井喷态势。根据免疫靶点,传统肿瘤免疫治疗药物分为五类,即免疫检查点抑制剂、直接免疫调节剂、过继细胞治疗、溶瘤病毒和癌症疫苗。此外,精准度和环境敏感性更高的自组装药物的出现为肿瘤免疫治疗提供了一种很有前景的创新途径。尽管肿瘤免疫治疗药物研发进展迅速,但所有候选药物都需要进行临床前安全性和有效性评估,而常规评估主要采用二维细胞系和动物模型,这种方法可能不适合免疫治疗药物。而患者来源的异种移植和类器官模型保留了肿瘤病理异质性和免疫性。
尽管免疫治疗具有明显的优势,但仍存在不可避免的脱靶效应,导致严重的不良免疫反应。近年来,药物递送系统(DDS)的研究和开发日益受到重视。在几十年的发展中,DDS已显示出以精确靶向的方式递送药物以减轻副作用的能力,并具有灵活控制药物释放、改善药代动力学和药物分布的优势。因此,我们认为将癌症免疫治疗与DDS相结合可以增强抗肿瘤能力。在本文中,我们概述了癌症免疫治疗中最新的药物递送策略,并简要介绍了基于纳米载体(脂质体、聚合物纳米胶束、介孔二氧化硅、细胞外囊泡等)和偶联技术(ADC、PDC和靶向蛋白质降解)的DDS的特点。我们的目的是向读者展示不同免疫机制下的各种药物递送平台,并分析它们的优势和局限性,为癌症免疫治疗提供更优越、更准确的靶向策略。