大部分太阳辐射都在可见光谱内。地球和太阳一样,也是一个辐射源,但由于地球温度较低,其辐射波长比太阳长得多(见图 5-2 和 5-3)。来自地球的辐射延伸到红外区域。入射太阳辐射和从地球向太空发出的辐射波长之间的差异是温室效应的基础。大气中化学物质吸收辐射的趋势取决于辐射的波长。某些化学物质在大气中存在时,会与短波长的入射辐射发生轻微反应,但与长波长的出射辐射发生强烈反应。这种与出射辐射的干扰会将能量困在大气中,其中一些能量会重新辐射到地面。
标准参考仪器系列 6014 校准参考光伏电池描述:此标准参考仪器 (SRI) 是封装的光伏 (PV) 电池,经过校准可在明确定义的报告条件下提供 20 mm PV 电池的短路电流 I sc ,例如 IEC 60904-3 或 ASTM G173 国际标准定义的标准报告条件(即,标准太阳对应于电池在 25 C 时的总入射辐照度为 1000 Wm -2 ),或低辐照度室内灯,如 LED 或荧光灯。参考仪器的最终用户使用它来测量其被测 PV 设备 (DUT) 上的有效入射辐照度,以进行电气特性分析,调整或监控太阳模拟器或其他光源的光强度,或者将校准转移到二次电池。
洛斯阿拉莫斯中子科学中心测量了 233 U 裂变的特性,入射中子能量从热能到 40 MeV。使用带有弗里希格栅的双电离室同时观察到碎片。使用基于质量和动量守恒的双能量分析法确定了释放的平均总动能和碎片质量产额。使用 232 Th 验证了实验方法,并使用 235 U 的热中子诱导裂变校准了绝对能量。这项工作结合了多机会裂变通道截面和裂变模型的新应用,以解释高能下瞬时中子发射引入的复杂性,并将结果扩展到比以前测量的更高的入射中子能量。必须对这些参数进行准确的实验测量,以更好地了解钍燃料循环中同位素的裂变过程。
图 3:检测效率和死时间引起的入射光子统计数据失真。具有泊松统计数据 Poisson( k | µT ) 的入射状态,µT = 80(实心方块),由于有限量子效率 η = 0 . 7(空心方块)而有效衰减,见公式 (10)。输出分布保持为泊松分布,具有泊松( m | ηµT )。对于具有可瘫痪死时间 t dead 的探测器,输出统计数据由公式控制。 (11)给出分布泊松(k | ηµT exp(−ηµt dead)),即它仍然保持泊松分布,新的均值为ηµT exp(−ηµt dead)(实心圆)。对于具有非瘫痪死时间t dead 的探测器,输出分布不再是泊松分布,而是亚泊松分布,参见公式(13)(空心圆)。
敏感节点对之间的电荷共享。当入射离子撞击敏感晶体管(例如节点 mn2 中的 PMOS 晶体管)时,一列电子-空穴对会沿入射轨道电离。电离载流子扩散到相邻的晶体管,导致相邻敏感节点之间的电荷收集,如图 3 所示。对于传统的 DICE 触发器,敏感节点对将收集足够的电荷并导致 SEU。对于所提出的 MSIFF,增加的节点间距可有效减少由于复合过程引起的扩散收集。此外,从属锁存器的插入组件也有助于收集额外的载流子 [19]。它将显著降低电离载流子密度并阻止扩散收集过程。因此,敏感节点对不会同时收集足够的电荷,并且所提出的 MSIFF 中不会发生 SEU。
jcprg.org › nrdc › CP-Memo PDF 1974 年 10 月 23 日 — 1974 年 10 月 23 日 入射 N 能量范围下限实验室系统。...第二标准值如果不止一个给出。
图1。对23种入射疾病和死亡率的蛋白质组学评估(n = 49,234)。 首先,单个COX比例危害(pH)模型用于概述基线蛋白分析物与入射疾病或死亡之间的关系。 在基本和完全调整的模型中都保留了P Bonferroni <5.4x10 -6的关联。 确定了与多种病因相关的蛋白质。 接下来,使用COX pH弹性净回归培训了蛋白质组学预测因子(蛋白质库),其中20个最少150例的事件结果。 使用随机列车和测试样品分配和情况:每个性状的对照比为1:3。 在测试集中选择了蛋白库,该蛋白库在5年或10年的发病率(根据特征的时间分布的适用性)中产生了中位数差异。 在基本模型中显着改善了AUC(p Bonferroni <0.0025)的11个蛋白质被前进,以进行更详细的协变量集进行分析。 HBA1C(一种临床使用的生物标志物)和多基因风险评分(PG)进一步检查了2型糖尿病蛋白库。对23种入射疾病和死亡率的蛋白质组学评估(n = 49,234)。首先,单个COX比例危害(pH)模型用于概述基线蛋白分析物与入射疾病或死亡之间的关系。在基本和完全调整的模型中都保留了P Bonferroni <5.4x10 -6的关联。蛋白质。接下来,使用COX pH弹性净回归培训了蛋白质组学预测因子(蛋白质库),其中20个最少150例的事件结果。使用随机列车和测试样品分配和情况:每个性状的对照比为1:3。蛋白库,该蛋白库在5年或10年的发病率(根据特征的时间分布的适用性)中产生了中位数差异。在基本模型中显着改善了AUC(p Bonferroni <0.0025)的11个蛋白质被前进,以进行更详细的协变量集进行分析。HBA1C(一种临床使用的生物标志物)和多基因风险评分(PG)进一步检查了2型糖尿病蛋白库。
辐射与盐水的相互作用促进了各种与能量相关的应用,例如空气 - 水界面处的辐射蒸发,辐射驱动的水下蒸气产生以及水下光电系统。但是,这些应用需要全面了解通过盐水的辐射传播,考虑到其光谱和方向性特征,这些特性通常不足以探索。这项研究介绍了配备精细光谱分辨率和详细的角度考虑的三维蒙特卡洛辐射转移模型。该模型模拟了从空气到空气 - 水界面以及整个盐水水体的转移,以彻底检查入射辐射的光谱和方向性对其在盐水不同深度的传播的影响。的发现表明,在太阳光谱中,辐射以62.7度的入射角进入水,并且完全扩散的辐射在小于2米深的水层中表现出相似的吸收效应。此外,当角度低于62.7°时,入射角对水面和水体的吸收率几乎没有影响。在光谱上,辐射波长长于1。4μm,1。14μm和1μm分别在第一个1、8和50厘米的盐水水中完全吸收,约占入射太阳辐射的20%,30%和50%。此外,来自1300开Kelvin的黑体源的辐射完全被完全吸收在盐水水的前1厘米内。经验相关性,以根据水的深度和黑体热源的温度轻松估计吸收率。这些发现阐明了入射辐射对其水下传播的光谱和方向特征的影响,为各种以能量为中心的应用提供了设计和性能评估的基本指导。
摘要。为了了解南极洲气候的演变,需要在气候模型中准确捕捉控制地面和低层大气气象学的主导过程。我们使用了 10 公里水平分辨率的区域气候模型 MAR (v3.11),该模型由 ERA5 在 9 年期间 (2010-2018) 重新分析,以研究飘雪 (此处指 2 米以下和 2 米以上的风驱动雪粒运输) 对东南极洲阿德利地近地面大气和地表的影响。进行了两次模型运行,一次有飘雪,一次没有飘雪,并与阿德利地沿海多风地点 D17 的半小时现场观测进行了比较。我们表明,大气中飘雪颗粒的升华导致了模型运行之间的差异,并对近地面大气产生了重大影响。通过冷却低层大气并增加其相对湿度,飘雪还会减少地表的感热和潜热交换(平均 -5.7 W m-2)。此外,大而密集的飘雪层通过与入射辐射通量相互作用,增强入射长波辐射并减少夏季入射短波辐射(净辐射强迫:5.7 W m-2),充当近地面云。即使飘雪改变了这些涉及地表-大气相互作用的过程,由于地表能量通量的补偿效应,总地表能量收支仅因飘雪的引入而略有改变。飘雪驱动的影响是
摘要:我们已经对聚(3-己基噻吩)(P3HT)(P3HT)和[6,6] - 苯基C61丁基甲基甲基酯酯活性层活性层活性层散装散装量量形的理论入射光子到电流(IPCE)作用光谱。通过玻璃基材/SIO 2/ITO/PEDOT的结构的二维光学模型:PSS/P3HT:PCBM(1:1)/CA/AL,该设备的光响应已计算出针对不同的光活性层和CA层的厚度,从而可以找到最大的设备构造,从而可以在最大程度上效率地效果,从而获得了最大的效果效果,从而可以在上位效果,从而获得最大的效果。已经计算出电场强度,能量耗散,发电速率和IPCE,以提高设备的性能。有限元方法在1.5 AM照明的100 mW/cm 2的入射强度下执行模拟。发现,最佳结构是通过180 nm光活性层和5 nm Ca层厚度实现的。