疲劳是军用飞机结构设计和持续适航性监测中的一个重要考虑因素。在 1991 年于巴斯举行的上一次 AGARD 会议上,会议确定需要审查用于评估机身部件疲劳损伤和裂纹扩展的几种方法的有效性,方法是将其预测与全尺寸试验和服务经验进行比较,从而对每种方法固有的保守程度进行分类。后一种考虑对于疲劳消耗的合理管理至关重要。为此目的。AGARD 内的结构和材料小组 (SMP) 于 1993 年秋季组织了一次研讨会,题为“疲劳损伤和裂纹扩展预测技术评估”。
摘要 — 风荷载是设计结构时要考虑的最重要因素之一。在先前的研究中,使用了多种方法来测试和测量风荷载——全尺寸测量、风洞测量、分析模型和计算流体动力学 (CFD)。在这些方法中,一些研究人员选择了不同类型的参数来量化风荷载。虽然一些参数仅关注风荷载的一两个方面,但 CFD 模拟提供了对建筑物对风荷载响应的更全面测量。除了 CFD 的定量测量外,其 3D 可视化轮廓功能还可以提供有关风荷载的更详细信息,这可以极大地帮助建筑设计和设计优化。关键词— 3D 可视化轮廓、计算流体动力学 (CFD)、压力系数、Strauhoul 数、风荷载、风洞。
本报告对排水型船体水动力冲击载荷的最新进展进行了全面评估。本主题从三种不同的现象出发,即砰击、波浪拍击和正面冲击。导致水动力冲击的因素是根据环境和船舶特性来定义的。冲击理论在二维和三维分析水动力模型、水弹性模型、耐波性理论、模型试验和全尺寸数据等子类别中进行回顾。确定并描述了适合分析和潜在设计应用的技术和程序,总结了每种技术和程序的特点,并介绍了与这些技术和程序相关的示例计算。本报告最后提出了未来研究的建议。
量子计算是一个新兴领域,由于量子信息处理的优势,最近在科学界吸引了大量兴趣。构成量子计算机的量子信息的基本单位是量子。已经提出了几个平台作为对这些量子位的物理实现,目的是使量子计算成为可行的技术,但是没有一个平台明显优于其他平台。本文献综述通过比较和对比当今一些最有希望的量子平台来讨论量子计算领域的当前状态。这样做,本文分析了将来的每种可行性,以实现全尺寸量子计算,并绘制出量子计算在未来几年中如何进行的可能轨迹。
1.1 复合直升机的示例.......................................................................................................................................................3 1.2 倾转旋翼飞机的示例.......................................................................................................................................................3 1.3 前飞对后飞桨叶速度的影响.......................................................................................................................4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后飞桨叶升力来平衡旋翼力矩的需要,可以缓解后飞桨叶失速,就像单旋翼飞行器一样(左图)[5]。................................................................ ..................................................................................................................................................................................4 1.5 兰利全尺寸风洞中的 PCA-2 转子试验装置 [11]。...9 1.6 采用悬臂转子配置的 Meyer 和 Falabella 风洞试验装置 [12]。......................................................................................................................................................................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾音器 [12]。 12 1.9 1965 年詹金斯在兰利全尺寸风洞中的试验装置 [13]。 14 1.10 高进速比时转子推力和 H 力系数与总距(A0)的关系,显示总距推力反转 [13]。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.13 在增加前进比的情况下,在盘面载荷恒定的情况下测得的有效旋翼升阻比 [16]。 . . . . . . . . . . . . . 21 1.14 升力对总距比和前进比的敏感度变化 [16]。 . . . . . 22 1.15 在 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中监测 UH-60A 空气载荷旋翼 [17]。 . . . . . . . . . . . . . . 24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。 . ...
摘要 — 风荷载是结构设计时需要考虑的最重要因素之一。在之前的研究中,人们使用了多种方法来测试和测量风荷载——全尺寸测量、风洞测量、分析模型和计算流体动力学 (CFD)。在这些方法中,一些研究人员选择了不同类型的参数来量化风荷载。虽然一些参数只关注风荷载的一两个方面,但 CFD 模拟可以更全面地测量建筑物对风荷载的响应。除了 CFD 的定量测量外,其 3D 可视化轮廓绘制功能还可以提供有关风荷载的更详细信息,从而极大地帮助建筑设计和设计优化。关键词 — 3D 可视化轮廓绘制、计算流体动力学 (CFD)、压力系数、Strauhoul 数、风荷载、风洞。
疲劳是军用飞机结构设计和持续适航性监测中的一个重要考虑因素。在 1991 年于巴斯举行的上一次 AGARD 会议上,会议确定需要审查用于评估机身部件疲劳损伤和裂纹扩展的几种方法的有效性,方法是将其预测与全尺寸试验和服务经验进行比较,从而对每种方法固有的保守程度进行分类。后一种考虑对于疲劳消耗的合理管理至关重要。为此目的。AGARD 内的结构和材料小组 (SMP) 于 1993 年秋季组织了一次研讨会,题为“疲劳损伤和裂纹扩展预测技术评估”。
●概述:Indy Autonomous挑战是一项全球竞赛,大学团队设计自动赛车以在全面赛车赛道上竞争[1]。●关键技术:自动驾驶依赖于高端传感器,例如光检测和射程(LIDAR),无线电检测和射程(雷达)和摄像机。自主驾驶还依靠深度学习来实时感知,以及针对高速操纵而优化的控制系统。●相关性:尽管全尺寸,但该项目展示了自动驾驶汽车赛车的尖端,包括使用实时人工智能(AI)和在高速条件下控制。Indy Autonomous挑战的一些竞争对手最初是从小型赛车自动驾驶汽车开始的。因此,我们认为那里使用的技术可以缩减到我们的项目。
SSC-363 旨在量化海洋结构应力分析中的误差,并提供建立设计安全标准所需的信息。虽然它确实试图将偶然不确定性和认知不确定性区分开来,但在审查的报告中,这种做法相当不寻常,但在这方面它并不完全成功。这不是一项简单的任务,而且对于哪些变量属于这两类之一,在解释上似乎存在根本差异。作者假设 SRSS(平方和的平方根)可用于组合几乎所有的不确定性,而不管基本变量之间是否存在任何可能的相关性。在评估 FEA(有限元分析)的准确性时,网格细化被忽略,可靠性评估中利用的一系列全尺寸测量程序也是如此。