摘要 - 我们研究了配备有手臂的腿部机器人的移动操作问题,即腿部手机。机器人腿通常用于活动性,但通过进行全身控制提供了一个机会来扩大操纵功能。也就是说,机器人可以同时控制腿部和手臂以扩展其工作区。我们提出了一个可以通过视觉观测来自主进行全身控制的框架。我们的方法,即视觉全身控制(VBC),是由低级政策组成的,使用各个自由度来跟踪人体速度以及最终效应器位置以及基于视觉输入的速度和最终效应器位置的高级政策。我们在模拟中训练两个级别的策略,并执行SIM2REAL转移以进行实际机器人部署。我们进行了广泛的实验,并在以不同的配置(高度,位置,方向)和环境中拾取不同对象时表现出明显的优势。
类人机器人具有与Humans相似的形态,具有执行人类在日常生活中可以完成的各种任务和动作的潜力。,由于高维状态空间和控制性的综合性,发展具有人类类似人类的行为,从而限制了其现实世界的应用仍然具有挑战性。随着大规模Human运动数据集的可用性不断增长[4,45],一种解决这一挑战的实用方法是通过跟踪和模仿人类动作来复制多功能运动[8,20,23,24]。但是,在考虑硬件时,人形机器人和人类仍然完全不同,这阻碍了机器人完全复制人类运动的能力。这提出了一个令人信服的研究问题:鉴于它们的身体局限性,我们如何在保持其稳定性和稳健性的同时,追求人形机器人的表现力,类人类的能力?在本文中,我们引入了先进的表达全身控制(Exbody 2),这是一个有效的框架,可最大程度地揭示人形机器人对可行的全身运动的表现力。该框架属于SIM2REAL管道,该政策将采用参考运动运动作为输入,并输出控制真实类人动物以在现实世界中进行运动的动作。我们培训一项单一的政策,该政策跨越了不同的输入信息。我们确定了四种技术设计以实现这一目标:(i)构建可行且多样化的培训数据集。一些作品通过完善数据集解决了这一点。我们系统地分析数据集人类运动数据集(如Amass [45])通常包含超出机器人物理帽的复杂运动,从而使跟踪过于挑战和降低表现。前[8],例如,通过模棱两可的描述(例如“舞蹈”)仍然可以包含不合适的动作,从而滤除了使用语言标签的不可行动作。其他AP-PARACHES,例如H2O [24]和OmniH2O [24],采用SMPL模型来模拟虚拟类人动物并滤除复杂运动。但是,SMPL化身可以执行真正的机器人无法执行的操作,从而在模拟和现实世界可行性之间造成差距,从而仍会影响训练有效性。
保留所有权利。未经许可不得重复使用。(未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权持有者此版本于 2025 年 2 月 2 日发布。;https://doi.org/10.1101/2025.01.29.25321332 doi:medRxiv preprint
法国波尔多的医学肿瘤学部,巴黎的介入放射学系法国Dijon Bulgundy和FrancheComté摄于胃肠病学和GI肿瘤学系,Chu Haut-Leveque,波尔多大学,法国PESSAC,FRANCE-LEVEQUE,BORDEAUX,BORDEAUX,PESSAC,PESSAC,FRANCE GESTRIS GEORITION和GIOROLOLOGY和GIOR ONCOROLOGY,GEOR ONCORTION,EUROP ONCORTION,CHU HAUT-LEVEQUE系法国H胃肠病学和GI肿瘤学系Siric Carpem,Ch Saint-Jean,Perpignan,法国I介入放射学系,Gustave Roussy,Biotheris,Paris-Saclay,Villejuif,法国J大学,胃肠病学和肝病学系,ChuLaMilétrie,Poitiers,Poitiers,k k. Enterology and GI肿瘤学,法国Ch pau,法国n胃肠病学和GI肿瘤学系,BOLYCLINIQUE BORDEAUX NORD AQUITAINE,BORDEAUX,法国Bordeaux o医学肿瘤学部,Corbeille Essonne,法国胃部和Gi Lecoge,franch franch of borgcage of burgcund of burgundy of burgund of burgundy of con Corbeille Essonne Ologol,Gustave Roussy,Inserm U1279,巴黎大学 - 萨克莱大学,Vilejuif,法国
ARC-OPT通过为不同的预定义WBC问题提供配置选项来支持软件开发人员设计此类全身控制器的支持。今天,WBC的方法论已经充分理解,并且存在几个成熟的框架。任务空间反向动力学(TSID)(Prete等,2016)在加速度上实现了腿部机器人的控制算法,而Posa等人的方法。(2016)在扭矩水平上运行。Smits等人。(2009)实施了广义速度-IK框架,但是,它与Orocos项目紧密结合。同样,Pink(Caron等,2024)是一种基于加权的任务框架,用于在Python中实现的差异逆运动学。IHMC全身控制器已为Atlas Robot开发(Feng等,2015),为基于QPS的步行和操纵提供了控制算法。Drake(Tedrake&Drake Development Team,2019年)是用于基于模型的设计和控制复杂机器人的库集。它为几个开源和商业求解器提供了接口,包括线性最小二乘,二次编程和非线性编程。最后,控制!(德克萨斯大学奥斯汀分校,2021年)是围绕Sentis&Khatib(2006)首次引入的全身操作空间控制算法建造的中间件。
弓形虫弓形虫宿主细胞浸润因子,例如Rhoptry蛋白,微生物抗原或其他亚细胞隔室蛋白,已显示出有限的疫苗效率。t。Gondii囊肿壁蛋白(CST1)作为囊肿持久性因子对于囊肿壁完整性和胸肌持久性至关重要。在这里,我们产生了表达t的流感病毒样颗粒(VLP)。Gondii CST1并评估了VLP诱导的粘膜和全身免疫。用VLPS诱导的寄生虫特异性IgG和IgA抗体反应在血清和肠道中引起的鼻内免疫。VLP免疫显示挑战感染后较高水平的生发中心B细胞反应和分泌抗体分泌细胞(ASC)反应,表明诱导记忆B细胞反应。VLP免疫的小鼠显示出大脑在t时大脑中囊肿计数的显着降低和较低水平的促炎细胞因子(IFN-γ,IL-6)产生。Gondii ME49挑战感染与无污染的对照相比。因此,VLP免疫保护小鼠免受致命剂量挑战与T的感染。Gondii ME49,并没有遭受体重损失。这些结果表明t。gondii CST1含有VLP可以诱导粘膜和全身免疫力,也表明其发育潜力是针对T的有效疫苗候选者。Gondii感染。
描述/背景高压氧疗法(HBOT)是一种将氧气压力更高的组织的技术。可用两种给药方法:系统性和局部使用。全身性HBOT在全身或大型高压氧腔中,患者完全封闭在压力室中,并在大于一个大气的压力下呼吸氧(海平面氧气的压力)。因此,该技术依靠全身循环来向目标部位传递高度氧的血液,通常是伤口。全身HBOT可用于治疗全身性疾病,例如空气或气体栓塞,一氧化碳中毒或梭菌GANGRENE。可以在用纯氧气加压的单盘室中进行处理,或者在较大的多个室内用压缩空气加压的室内,在这种情况下,患者会通过口罩,头部帐篷或气管导管接收纯氧气。局部HBOT局部高压疗法是一种将100%氧气直接输送到略高于大气压力的压力下的湿润的技术。可以假设,高浓度的氧气直接扩散到伤口中,以增加局部细胞氧张力,从而促进伤口愈合。设备由设备组成,用于封闭伤口区域(通常是四肢)和氧气来源;可以使用常规的氧气罐。这些设备可能是一次性的,可以在训练有素的患者中在不监督的情况下使用。局部高压疗法已被研究为糖尿病,静脉暂停,术后感染,坏疽性病变,depubitus溃疡,截肢,皮肤移植,烧伤或冻伤导致的皮肤溃疡的治疗。
全身性炎症和相互器官的相互作用与保留的射血分数(HFPEF)的心力衰竭的病理生理学有关。然而,未探索临床价值,尤其是炎症的诊断预测能力和HFPEF的心外器官功能障碍。在这项横断面研究中,根据纳入和排除标准,从2014年1月至2022年6月在Chihfpef队列中的1808例住院患者被完全招募。使用Logistic回归中的Chihfpef-Cohort的数据开发了带有常规血液检查以及HFPEF的肝脏和肾功能障碍的标记的诊断模型,并通过接收器工作特征曲线(ROC)和Brier评分进行评估。然后,该模型通过十倍的交叉验证验证,并以诺姆图和基于Web的在线风险计算器的形式呈现。多变量和LASSO回归分析表明,年龄,血红蛋白,中性粒细胞与淋巴细胞比,AST/ALT比率,肌酐,尿酸,心房颤动和肺动脉高压与HFPEF相关。预测模型表现出合理准确的歧视(ROC,0.753,95%CI 0.732-0.772)和校准(Brier评分为0.200)。随后的内部验证显示出良好的歧视和校准(AUC = 0.750,Brier评分为0.202)。参加HFPEF的病理生理,炎症和多器官相互作用具有HFPEF的诊断预测值。筛查和优化炎症和多器官相互作用的生物标志物代表了一个新领域,以改善HFPEF的无创诊断工具。
摘要:肝内胆管癌(iCCA)是一种胆道恶性肿瘤,近年来发病率不断上升。其病因尚不完全清楚,但已发现其与胆道炎症改变关系最大。手术治疗是主要治疗方式,但诊断时可切除的胆管癌不到30%,大多数患者需要全身治疗。卡培他滨化疗是标准辅助治疗。对于无法手术的肿瘤或转移性病变患者,可单独使用化疗或联合免疫治疗(durvalumab、pembrolizumab)。对于体能状态良好的一线治疗后病情进展的患者,需要提供全身治疗。目前仍在寻找治疗此类肿瘤的新途径,其中包括新出现的潜在靶点,例如异柠檬酸脱氢酶 (IDH)、成纤维细胞生长因子受体 2 (FGFR2) 或 BRAF 突变。
根据本许可条款,本作品可复制、重新分发和改编用于非商业用途,但需适当引用本作品。使用本作品时,不得暗示粮农组织认可任何特定组织、产品或服务。不得使用粮农组织徽标。如果改编本作品,则必须根据相同或等效的知识共享许可进行许可。如果翻译本作品,则必须包含以下免责声明以及所需的引用:“本译文并非由联合国粮食及农业组织 (FAO) 创作。粮农组织对本译文的内容或准确性不承担任何责任。原版 [英文] 应为权威版本。”