可再生能源的未来依赖于发现用于高密度储能的新材料。1 由于其多功能性、高极化电位和介电常数,铁电 (FE) ABO 3(A、B = 各种金属离子)钙钛矿是电容器技术中一类受欢迎的材料。2、3 PbTiO 3 和类似的钙钛矿基电容器由于 A 位 (Pb) 与 O 的偏心杂化而表现出出色的能量存储密度。3 然而,Pb 的毒性限制了它们的商业使用,因此需要无铅 FE 替代品。4 遗憾的是,由于 BO 6 八面体旋转/倾斜的反铁电畸变 (AFD) 畸变,导致中心对称 Pnma 空间群的优先稳定,室温下无铅 ABO 3 钙钛矿中的 FE 不稳定性受到抑制。 5 缺陷工程(Ca 掺杂、氧空位等)已被有效利用,通过修改 ABO 3 钙钛矿中的局部 A/B 位对称性来克服这些 AFD 畸变。6 传统上,
由于某些化学成分表现出所谓的杂化铁电性不当,近年来,近年来,ruddlesden-popper氧化物中温度依赖性的相变的次要氧化氧化物氧化物中的温度依赖性相变。然而,目前几乎没有理解这些相变的静水压力依赖性。本文中,我们介绍了对双层ruddlesdledlesden-popper阶段Ca 3 Mn 2 O 7和Ca 3 Ti 2 O 7的高压粉末同步X射线衍射实验和Abinitio研究的结果。在两种化合物中,我们都观察到一阶相变,结合了我们的密度功能理论计算,我们可以将其结合分配为极地A 2 1 AM和非极性ACAA结构。有趣的是,我们表明,尽管压力的施加最终有利于非极相,正如适当的铁电体所观察到的那样,但存在压力实际上可以增加极性模式振幅的响应区域。可以通过考虑八面体倾斜和旋转对静水压力及其三线性耦合与极性不稳定的旋转的多样化响应可以无障碍。
三元稀土金属氟化物CsEuF 3 在环境条件下呈现理想的立方钙钛矿结构[ABX 3 ],B阳离子位点被稀土Eu离子占据,形成EuF 6 八面体。本研究通过对Eu-L 3 边的磁化率和同步加速器X射线吸收光谱(XAS)分析,证实在环境条件下Eu处于二价氧化态。温度依赖的磁化率数据显示,由于从Eu 2+态到Eu 3+态的部分跃迁,Eu的平均价态在20 K以下升高,从而形成平均价态为+2.23的混合价态。利用高压高能量分辨率荧光检测-XAS技术获得了CsEuF 3中Eu离子价态波动的直接证据,其中观察到价态从环境压力下的2.15 +连续变化到10.5 GPa下的2.5 +。这些发现表明,在类似的系统中,稀土金属有可能发现与价态不稳定性相关的有趣物理特性。
摘要。三元锂电池(TLB)和磷酸锂电池(LIPB)是当前电池市场中两种流行的电池类型。他们在性能和应用领域中具有自己的优势和缺点。通过分析两种类型的电池的结构,性能和应用,可以看出,TLB的阳极是具有高能量密度,强大的快速充电能力和出色的低温放电性能的八面体结构。阳极材料中镍,钴和锰的不同比率适用于多种未使用的场合。但是,TLB的高温稳定性很差,在高温下很容易发生热失控,并且它们的循环寿命相对较短。LIPB以其高安全性,较长的周期寿命和相对较低的成本而闻名。其独特的橄榄石晶体结构和稳定的P-O共价键具有出色的热稳定性,即使在高温下,电池也不容易分解。LIPB的缺点主要反映在其较低的能量密度和低温放电性能中。结合两种材料的优势来开发具有高能量密度和高安全性的新电池材料将是未来的重要研究方向。
量子数及其意义。s,p,d,f块元素,周期表的长形式。详细讨论了元素的以下属性,参考了标准普尔群。有效的核电,屏蔽或筛选效果,Slater规则,周期表中有效核电的变化。一般特征,离子类型,尺寸效应,半径比规则及其局限性。晶体中离子的包装。带有派生和格子能量的出生时方程。Madelung Constant,Born-Haber循环及其应用,溶剂化能量。刘易斯结构,价键理论,分子轨道理论。正式电荷,价壳电子对排斥理论(VSEPR),氧化还原方程,标准电极势及其应用于无机反应。bronsted-lowry酸碱反应,溶剂化质子,酸的相对强度,酸碱反应的相对强度,水平溶剂,刘易斯酸基概念,刘易斯酸的分类,硬酸和软酸和碱基(HSAB)的应用。惰性成对效应,对角线关系同种异体和串联。S和P块元素的复杂形成趋势。 研究化合物,重点是结构,粘结,制备,性质和用途。 硼酸和硼酸盐,氮化硼,硼氢化物(二苯甲酸酯)和石墨化合物,氮,磷和氯的硅烷,氧化物,氧化物和亚酸。 硫,间外化合物,聚盐离子,伪卤素和卤素基本特性的过氧酸。 物理化学S和P块元素的复杂形成趋势。研究化合物,重点是结构,粘结,制备,性质和用途。硼酸和硼酸盐,氮化硼,硼氢化物(二苯甲酸酯)和石墨化合物,氮,磷和氯的硅烷,氧化物,氧化物和亚酸。硫,间外化合物,聚盐离子,伪卤素和卤素基本特性的过氧酸。物理化学Werner的理论,价键理论(内部和外轨道复合物),电中心原理和背部键合。晶体场理论,10 dq(ΔO),弱和强场中的CFSE测量,配对能量,影响10 dq(ΔO,ΔT)的因素。八面体与四面体配位,八面体几何学jahn-teller定理的四方畸变,方形平面几何形状。配体领域和MO理论的定性方面。
摘要:由于对气候变化、环境恶化和能源安全的担忧,氢气作为能源载体的潜力得到了广泛认可,但氢气的储存和运输仍然是重大挑战。具有钙钛矿晶体结构的氢化物可以在较小的体积内储存大量的氢气,并且相对容易产生氢气。其中,三元钙钛矿氢化物 NaMgH 3 具有相对较高的理论储氢密度和氢吸收和解吸的可逆性。在本研究中,采用密度泛函理论框架下的第一性原理计算,研究了用 K ? 取代 Na ? 的影响。对Na1–xKxMgH3(x0:75Þ)结构、电子和储氢性能的影响。结果表明,用K–取代Na–导致晶格参数略有下降、晶胞体积增加,MgH6八面体变得更加扭曲,这是主体材料不稳定的一个很好的指标,最终导致分解温度从560.1降低到489.6K,这有利于储氢应用。
极性在具有强电子偶联的凝结物质系统中普遍存在。极性的绝热性与其传输特性和空间范围有关。迄今为止,仅在光激发后才测量绝热的小极极形成。晶格的重组能量足够大,以至于第一个电子 - 光学声子散射事件会产生一个小极极子,而无需大量的载体热融化。我们测量在稀土原氧化物Erfeo 3中以铁为中心的八面体的挫败导致抗脱绝热极性的形成。通过瞬态极端紫外线光谱法测量相邻的Fe 3 +位置之间的相干电荷跳跃,并持续几次粉红色。重新构成的小极极形成时间比以前的测量值长,即使在激发态下也表明浅势良好。结果强调了考虑动态电子电子相关性的重要性,而不仅仅是电子 - phonon诱导的晶格变化,用于转交,催化和光激发应用的小极地。
具有极快响应时间的爆炸能量转换材料在能源、医疗、国防和采矿领域有着广泛且日益增长的应用。对该领域潜在机制的研究和新候选材料的搜索非常有限,以至于环境不友好的 Pb(Zr,Ti)O 3 在半个世纪后仍然占主导地位。在这里,我们报告了一种以前未被发现的无铅 (Ag 0.935 K 0.065 )NbO 3 材料的发现,该材料具有创纪录的高能量存储密度 5.401 J/g,可在 1.8 微秒内实现约 22 A 的脉冲电流。它还表现出高达 150°C 的优异温度稳定性。各种现场实验和理论研究表明,这种爆炸能量转换的潜在机制可以归因于压力引起的八面体倾斜变化,从 a − a − c + 到 a − a − c − / a − a − c +,这与不可逆的压力驱动铁电-反铁电相变一致。这项工作为 Pb(Zr,Ti)O 3 提供了一种高性能替代品,也为进一步开发用于爆炸能量转换的新材料和设备提供了指导。
是由高t C镍超导体最近快速进步的动机,我们全面研究了交替的双层三层式镍7 ni 5 o 17的物理特性。该材料的高对称阶段,没有氧气八面体的倾斜,在环境条件下不稳定,而是在高压下变得稳定,在高压下出现了由d 3 z 2-r 2状态组成的小孔袋γ0。在我们以前针对TriLayer LA 4 Ni 3 O 10的工作中确定了这个口袋对于发展超导性很重要。此外,使用随机相近似计算,我们在压力下找到了高对称相的领先S±配对状态,其配对强度与以前在BiLayer La 3 Ni 2 O 7化合物中获得的配对强度相似,这表明具有相似或更高的超导导过渡温度t c。此外,我们发现驱动该配对状态的系统中的主要磁波动在平面内以及顶部和底部三层和双层均匀的平面之间具有抗铁磁结构,而中间三层层则是磁性脱耦的。
摘要。每种蛋白质都由一个由 20 个字母/氨基酸组成的线性序列组成。该序列通过二级(局部折叠)、三级(键)和四级(不相交的多重)结构在三维空间中展开。我们之前发表的两篇论文中,利用有限群 G n := Z n ⋊ 2 O(n = 5 或 7,2 O 为二元八面体群)的(信息完整)不可约特征,可以预测线性链的 20 个字母的遗传密码的存在。事实证明,一些蛋白质复合物的四级结构表现出 n 重对称性。我们提出了一种基于自由群理论的二级结构方法。将我们的结果与其他根据 α 螺旋、β 片层和卷曲或更精细的技术预测蛋白质二级结构的方法进行了比较。结果表明,蛋白质的二级结构与某些双曲 3 流形的结构相似。体积最小的双曲 3 流形(Gieseking 流形)、其他一些 3 流形和定向超制图群被选为此类二级结构的暂定模型。对于四级结构,存在与 Kummer 表面的联系。
