氧化石墨烯(GO)由于其机械,光学,电气和化学性质而引起了科学界的显着关注。本综述概述了综合方法进行功能化,包括涉及有机分子共价和非共价键的合成方法。在对这一领域的新贡献中,特别强调通过环氧环开放的功能化,这是一个研究和理解的主题。我们首先提供了石墨烯氧化石墨烯的基本结构和特性的概述。然后,我们探索用于使氧化石墨烯官能化的各种方法,并指出这些反应的复杂性,这些反应有时以非特定方式发生。但是,有一些针对性功能化的策略。此外,我们通过环氧基团对共价官能化进行了批判性分析,在选择反应培养基时表明要考虑的重要方面。碱性环境似乎有利于这种反应,并且在功能化反应中使用碱性pH的优点和缺点尚无共识。我们还展示了一些挑战,这些挑战涉及功能化的表征和确认,主要是在基础平面中,并且我们展示了可以在未来的研究中探索的表征技术的进步。最后,提出了一些当前的挑战和未来的研究指示,以促进该领域的发展。
石油运营最大的问题之一是材料的腐蚀,这导致了巨大的财务损失。金属工业结构经常暴露的环境使腐蚀过程更容易[1-3]。石油行业使用酸溶液来泡菜,酸清洁和降钢钢组件[4,5]。为防止碱金属腐蚀,添加酸化抑制剂。预防腐蚀的潜在疗法是使用有机抑制剂[6]。这些有机抑制剂通常在静电上与金属表面结合或在沉积在那里之前形成的共价键(化学吸附)(物理吸附)。这些物质产生了不溶性复合物或被吸附到金属表面上,阻塞了活性腐蚀位点[7]。先前的研究表明,吸附主要取决于P-或D-ELECTRON和该分子的杂原子,这会导致更多的抑制剂分子与低碳钢表面结合。大多数具有高电子密度杂原子的有机化合物,例如用作吸附位点的磷,硫,氮和氧气,是有效的金属腐蚀抑制剂[8-11]。酰胺化合物作为有机腐蚀抑制剂的有效性最近已成为众多研究的主题[12-14]。然而,对使用金属腐蚀抑制剂的兴趣已经扩展了简单的预防,以包括抑制剂的效力水平。
摘要:covid-19是由新型包裹的β-核心管病毒引起的,其基因组RNA与严重的急性呼吸系统综合症 - 科罗纳病毒(SARS-COV)密切相关,并被称为冠状病毒2(SARS-COV-2)。在这项研究中,针对RBD专门停靠了六种合成药物。观察到六种化合物中的大多数与特定的非共价相互作用非常吻合。oseltamivir被发现是与RBD最强烈的相互作用,表现出高适应性和低自由能的结合能量。它在活性位点的区域中形成了多个非共价键。羟基氯喹还表现出溶剂可访问性的高结合亲和力,并且非常适合S蛋白的活性口袋。结果表明,这些化合物可能是S蛋白质的有效抑制剂,在某种程度上可以阻止其与ACE-2的相互作用。从SARS-COV-2峰值蛋白的3D结构中显而易见,随着不同药物的相互作用,这会导致不适合结合ACE2受体。因此,有必要阐明这些化合物对SARS-COV-2的作用的实验室研究,以进行临床评估。氯喹,羟基氯喹和Oseltamivir通过非共价相互作用与S蛋白的受体结合结构域相互作用,并被建议作为Covid-19的出色候选者。
寻找与目标靶点形成共价键的酶抑制剂是药物开发中一个越来越受欢迎的焦点。然而,在评估其时间依赖性抑制特性以及与文献中报道的值建立相关性时,出现了挑战。鉴于肿瘤学中表皮生长因子受体 (EGFR) 酪氨酸激酶受到广泛关注,以及共价 EGFR 抑制剂的多种结构和结合模式,本观点旨在探索在测量此类药物的动力学参数时出现的各种广泛相关因素。对几项研究的回顾表明,不同的文献效力值要求研究人员包括适当的参考分子和一致的底物条件,以保持实验一致性和适当的基准。调查了常见缓冲条件和化合物液体处理对共价抑制剂效力的影响,强调了在进行这些测定时多个实验变量的重要性。此外,在评估抑制剂针对 EGFR 突变体而非野生型 (WT) 的选择性效力时,由于 ATP 底物结合亲和力不同,最好考虑真实效力的比率。本文介绍的概述虽然最直接适用于酪氨酸激酶抑制剂领域,但可广泛用于抑制剂评估,为设计和验证下一代共价抑制剂的生化分析提供指导性见解。简介
在诸如生物医学和人机互动之类的有吸引力平台的快速发展已经对具有高强度,灵活性和自我修复功能的智能材料产生了紧迫的需求。然而,由于非共价键合固有的低强度,高强度,低弹性模量和治愈能力之间的交易挑战了现有的自我修复能力材料。在这里,从人类纤维细胞中汲取灵感,基于两亲离子限制器(7000倍的体积单体捕获)中的分离和重新构造,提出了一种单体捕获合成策略,以开发出Eutectogel。从纳米配置和动态界面相互作用中获得的好处,形成的配置结构域的分子链主链机械地加强了软运动能力。所产生的共凝剂表现出优异的机械性能(比纯聚合的深层共晶溶剂比抗拉伸强度和韧性高1799%和2753%),出色的自我修复效率(> 90%),低切向切向模量(在工作阶段的0.367 MPA)以及启发人类的人类活动。该策略有望为开发高强度,低模量和自我修复的可穿戴电子设备提供新的视角,适合人体运动。
联合国可持续发展目标 (SDG) 包括提供负担得起的清洁能源(目标 7),以实现全民和平与繁荣(可持续发展目标,2022 年)。其他可持续发展目标“可持续城市和社区”(目标 11)、“负责任的消费和生产”(目标 12)和“气候行动”(目标 13)也要求寻找可持续原料和清洁技术来生产可再生燃料。木质纤维素生物质是被研究作为生物燃料生产来源的突出和新兴原料之一。自然界中木质纤维素生物质的全球年产量估计为 1815 亿吨。其中,据说目前仅利用了 82 亿吨生物质,其中 70 亿吨来自森林、农业和草类,12 亿吨来自农业残留物(Ashokkumar 等人,2022 年)。这种生物质的传统用途是烹饪、取暖、建筑材料以及纸张、纸板和纺织品的生产。随着技术和生物质管理的进步,这种有价值的木质纤维素生物质可用于生产可再生生物燃料。此外,纤维素、半纤维素和木质素材料可以用于其他有用的工业生物产品和生物化学品(Ashokkumar 等人,2022 年)。木质纤维素生物质由木质素、纤维素和半纤维素组成,全球储量丰富。纤维素是自然界中最丰富的有机物质,其次是木质素。纤维素、半纤维素和木质素的百分比组成在软木、硬木、农业残留物和草类等木质纤维素材料中有所不同。木质纤维素生物质来自各种原料,如糖料作物、淀粉作物、农业残留物、草本生物质、木质生物质、油籽和微藻 ( Yuan et al., 2018 )。木质纤维素生物质的纤维素和半纤维素成分中存在的碳水化合物被认为适合生产生物燃料。然而,木质纤维素材料难以转化,因为木质纤维素生物质中的木质素会抑制生物质中碳水化合物的糖化和水解,从而给生物燃料转化带来挑战。将木质纤维素生物质中的聚合物转化为单体的主要挑战在于其结构中的强共价键和非共价键、结晶度和木质素结垢,需要克服这些才能将其用作生物燃料生产材料(Preethi 等人,2021 年)。木质纤维素材料的顽固性可以通过预处理步骤来克服,这些步骤会扰乱生物质中的木质素成分。此后,可以对纤维素和半纤维素进行酶水解。预处理方法可以是物理的、化学的、物理化学的或生物的。预处理导致木质纤维素材料碎裂,进一步增加其表面积和溶解度,并降低生物质中纤维素和木质素含量的结晶度(Hoang 等人,2021 年;Kumar 等人,2022 年)。原料选择、原料混合、高效预处理
抽象的人类活动会产生过多的营养,从而导致有害的藻华(HAB S),在全球范围内的数量和严重程度都在增加,从而造成了重大的生态问题和大量的经济损失。具有易于操作的成本效益的聚合膜代表了各种水生系统中传统Hab s Mitiga方法的有前途且可持续的替代品。在这项研究中,使用聚合物膜,特异性的聚合物(PCL/PMMA)(PCL/PMMA)和与聚乙烯乙二醇(PCL/PEG)的聚二苯二甲酮用于藻类缓解症。据我们所知,没有先前的研究探讨了PCL/PMMA和PCL/PEG复合聚合物膜在缓解藻类方面的应用。 使用溶剂铸造方法制备了这些薄膜。 成功制备的膜比为1:0.2、1:0.4和1:0.6。 ATR-FTIR分析通过检测与每个纯聚合物相对应的特征功能组峰来成功制备PCL/PMMA和PCL/PEG,这表明复合材料中聚合物之间非共价键相互作用的可能性。 热分析(TGA)表明所有膜比的热稳定性提高。 缓解量的藻类研究形成了光学显微镜分析,显示复合材料中存在藻类细胞。 除了这些COM POSITE聚合物膜的比率较高,PCL/PMMA的表现优于PCL/PEG,的去除效率提高了。 值得注意的是,1:0.4 PCL/PMMA膜表现出高效的藻类去除,微藻细胞之间的相互作用和在较短的时间内观察到的膜之间的相互作用。据我们所知,没有先前的研究探讨了PCL/PMMA和PCL/PEG复合聚合物膜在缓解藻类方面的应用。使用溶剂铸造方法制备了这些薄膜。成功制备的膜比为1:0.2、1:0.4和1:0.6。ATR-FTIR分析通过检测与每个纯聚合物相对应的特征功能组峰来成功制备PCL/PMMA和PCL/PEG,这表明复合材料中聚合物之间非共价键相互作用的可能性。热分析(TGA)表明所有膜比的热稳定性提高。缓解量的藻类研究形成了光学显微镜分析,显示复合材料中存在藻类细胞。除了这些COM POSITE聚合物膜的比率较高,PCL/PMMA的表现优于PCL/PEG,的去除效率提高了。 值得注意的是,1:0.4 PCL/PMMA膜表现出高效的藻类去除,微藻细胞之间的相互作用和在较短的时间内观察到的膜之间的相互作用。的去除效率提高了。值得注意的是,1:0.4 PCL/PMMA膜表现出高效的藻类去除,微藻细胞之间的相互作用和在较短的时间内观察到的膜之间的相互作用。与其他膜相比,这部电影在15分钟内达到了最高的去除效率10.6%。在这项预先研究中,复合聚合物膜显示出良好的潜力和有前途的缓解藻类相关的候选者。
摘要:分子靶向放射性核素疗法 (TRT) 难以平衡疗效和安全性,因为目前增加肿瘤吸收的策略通常会改变药物药代动力学以延长血液循环和正常组织照射时间。我们在此报告了第一个共价蛋白 TRT,它通过与靶标发生不可逆反应,增加了肿瘤的放射性剂量,而不会改变药物的药代动力学特征或正常组织的生物分布。通过遗传密码扩展,我们将潜在的生物反应性氨基酸设计成纳米抗体,该抗体与其靶蛋白结合并通过邻近反应形成共价键,在体外、癌细胞和体内肿瘤上不可逆地交联靶标。放射性标记的共价纳米抗体显着增加了肿瘤中的放射性同位素水平并延长了肿瘤的停留时间,同时保持了快速的全身清除。此外,与 α 发射体锕-225 结合的共价纳米抗体比非共价纳米抗体更有效地抑制肿瘤生长,而不会引起组织毒性。这种化学策略将基于蛋白质的 TRT 从非共价模式转变为共价模式,改善了肿瘤对 TRT 的反应,并且可以很容易地扩展到针对广泛肿瘤靶点的多种蛋白质放射性药物。■ 简介
外壳它们与相邻硅原子形成4个共价键。这将形成一个纯晶格,其中没有脱位的电子,并且是绝缘子。硅是一种半导体材料,因此可以通过称为“掺杂”的过程将杂质引入晶体结构来量身定制。最常用的元素是磷和硼。对于标准的NPN或PNP晶体管,术语PNP和NPN术语引用了其中的材料的布置。硅可以通过不存在电子的可移动正电荷(孔)进行操作,或者当结构中存在多余的电子时。用价3离子掺杂(例如Boron)(p-Type)在掺杂价5个离子时会产生带正电荷的材料(例如,磷)(N型)形成带负电的材料[3]。在它们之间的边界中产生一个负耗竭层,该层是由于负电荷相互驱除而阻止更多的电子通过。当通过第三端子将正电压应用于晶体管的底部时,耗尽层被否定,使电子自由流动并完成电路。虽然仍用作开关组件,但事实证明,晶体管在控制当前输入电容器的内存芯片中特别有用。此类存储的值提供了二进制表示的基础。与布尔代数一起,晶体管支撑着每个电子设备的功能。达灵顿晶体管可用于扩增电信号
- 丙酮酸)(PCL),D-α-二甲基聚乙烯乙二醇(TPGS)和聚乙烯乙二醇(PEG)以及天然聚合物(例如透明质酸)(HA)。聚合物的选择对于达到所需的特性至关重要,例如稳定性,生物相容性和受控药物释放至关重要。随后,探索了将药物共轭的策略,包括共价键,这使聚合物与药物之间的稳定联系,确保受控释放并最大程度地减少过早药物释放。使用聚合物可以扩展药物的循环时间,从而通过增强的渗透性和保留效应(EPR)效应来促进肿瘤组织中的积累。这反过来又会改善药物效率和降低的全身毒性。此外,突出显示了PDC中靶向肿瘤的配体的重要性。可以将各种配体(例如抗体,肽,适体,叶酸,赫赛汀和HA)掺入偶联物中,以选择性地将药物输送到肿瘤细胞中,从而减少靶向效果并改善治疗结果。总而言之,PDC已成为一种多功能有效的癌症治疗方法。它们结合聚合物和药物优势的能力提供了增强的药物输送,控制释放和靶向治疗,从而提高了癌症治疗的总体效率和安全性。该领域的进一步研究和发展具有推进个性化癌症治疗选择的巨大潜力。