摘要 里德堡激子(凝聚态系统中里德堡原子的类似物)是具有大玻尔半径的高度激发的束缚电子空穴态。它们之间的相互作用以及激子与光的耦合可能导致强光学非线性,可用于传感和量子信息处理。在这里,我们通过里德堡阻塞现象以及在 Cu2O 填充微谐振器中形成极化的激子和光子的杂化实现了强有效光子 - 光子相互作用(类克尔光学非线性)。在脉冲共振激发下,由于光子-激子耦合随着激子密度的增加而减少,极化子共振频率被重新正化。理论分析表明,里德堡阻塞在实验观察到的极化子非线性系数缩放中起着重要作用,因为对于高达 n = 7 的主量子数,∝ n 4.4 ± 1.8。首次在极化子系统中研究如此高的主量子数对于实现高里德堡光学非线性至关重要,这为量子光学应用和固态系统中强关联光子(极化子)态的基础研究铺平了道路。
我们提出了一种基于多体自旋梳的大规模通用量子信息处理的理论路径,利用我们在金刚石纳米光子波导中的色心平台实现具有可编程纠缠的量子图。应变固体导致不同色心产生各种位置相关的电子自旋共振频率,从而有效地产生自旋梳。自旋梳由谐振交流应变场驱动,具有可编程周期波形,可执行局部量子位操作,如动态解耦。使用新的梯度上升最优控制技术对串联复合脉冲进行波形优化,以同时校正非共振和振幅误差。原则上,这可以增强所有量子位的相干时间 T2*,而不会消耗太多功率,因为整个系统都是共振的。为了在不同量子位之间创建非局部纠缠相互作用,我们考虑了两种类型的玻色子链路:分别用于连接相同和不同波导中的量子位的声子总线和光学总线。利用制造缺陷和波导基本模式的相应差异,最终可以在我们的量子图中实现全对全纠缠。anand43@mit.edu
摘要:我们通过位于平坦介电底物上的平坦石材条的无限光栅考虑了电子极化平面波的散射和吸收。为了构建一个受信任的全波无网格算法,我们将散射问题扔给了双重系列方程,并基于离散傅立叶变换的倒数来执行其分析正则化。然后,对于未知的floquet谐波振幅,该问题将减少到Fredholm 2-Kind矩阵方程。因此,由Fredholm定理保证了所得代码的收敛性。数值实验表明,这种构型是频率选择性的跨表交或一个周期性光子晶体。如果光栅周期和底物厚度是微米大小的,则这种空腔的共振频率在Terahertz范围内。在电子极化情况下不存在等离子体模式,这些共振对应于底物的低Q板模式,并因光栅的存在而略微扰动,并且整个弹药的超高Q晶格模式作为周期开放式腔。我们使用我们的全波数值代码量化了它们的效果,并为晶格模式频率和Q因子得出渐近分析表达式。
摘要:血糖的测量受到多种约束的影响;在设计电磁非侵袭性传感器时,必须识别和量化这些约束。第二阶段涉及这些约束的影响的水平。在这项工作中,我们研究了前臂中静脉半径对谐振微波传感器的影响,以测量糖血症。我们使用与微波谐振器接触的提议的组织模型的COMSOL多物理进行了数值模拟。其他一些因素会影响测量,例如温度,灌注,传感器定位和运动,组织异质性和其他生物学活性。传感器必须适合上述约束。由于静脉的大小从一个人变为另一个人,因此传感器看到的介电特性会有所不同。在模拟传感器的共振频率中为不同静脉尺寸的谐振频率所产生的变化证明了这一点。评估的第二个约束是剂量法。应评估任何电磁设备的特定吸收率(SAR),并将其与安全标准中的SAR限制进行比较,以确保用户的安全性。模拟结果与安全标准中的SAR限制非常吻合。
相锁环(PLL)在物联网的手持移动通信设备中起着重要的作用。无线通信技术的应用促进了PLL的开发,其抖动,小面积和低功率[1,2,3,4,5]。电压控制的振荡器(VCO)是PLL的关键模块,它必须具有低功率和低相位噪声的特征,以满足低功率802.11AH物联网标准的需求[6,7,7,8,9,10,11],即在低于1 GHz的频率范围内,功耗和相位噪声必须分别小于5 MW和-100 dBC/Hz。作为无线通信的关键技术之一,物联网在典型的应用程序(例如手持设备,磨损设备和智能家居)中起着重要作用。随着访问终端设备数量的快速增长,对低功耗,低相位噪声和高集成的通信需求变得越来越突出。主流VCO分为LC-VCO和RING-VCO [12]。LC-VCO通常由两个部分组成,即LC谐振器,以确定共振频率和负电阻单元以提供能量。在学术界和行业中,LC-VCO的创新和改进的努力是进一步降低相位噪声和功耗,并增加调音范围。ring-vcos是
摘要。我们报告了使用扭转和双轴定向的聚乙二醇苯二甲酸酯铰链的两轴可易剂显微镜镜。研究了基于四个或单线电磁执行器的两种不同的设计。开发了一种基于微加工的工厂过程,以实现高模式分辨率和对准精度并减少手动组件的量。具有扭转铰链,快速轴的谐振频率为300至500 Hz,水中有200至400 Hz。带有弯曲的铰链,慢速轴的共振频率为60至70 Hz,水中的谐振频率为20至40 Hz。2D B扫描和3D体积超声显微镜使用杂交扫描镜进行了证明。在直流或非常低的频率下扫描慢轴的能力允许形成密集的栅格扫描模式,以改善成像分辨率和视野。©作者。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jom.1.4.044001]
硅(SI)中的供体和量子点旋转量值是可伸缩量子计算体系结构的有吸引力的候选者[1-3]。si提供了一个理想的矩阵,用于托管自旋矩形,因为它在微电子行业,弱自旋轨道耦合以及具有零核自旋的同位素的存在。nat-ural Si由三个同位素组成:28 Si(92.23%),29 Si(4.67%)和30 Si(3.1%)[4]。NAT Si中的量子量解的主要来源是由于与周围的29 Si核耦合,该核具有i = 1/2的核自旋。< / div>29 si旋转的偶极爆发在局部磁场中引起伴随,从而导致时间变化的量子共振频率[5,6]。通过使用HAHN-ECHO脉冲序列测量了对电子供体核的电子[7]的自旋相干时间[7]和电离供体核[8]的60 ms [7]和60 ms的限制。幸运的是,28 Si没有核自旋,因此可以为旋转量器提供理想的低噪声环境。在28 si层中供体旋转量值的较长连贯性时间与800 ppm残留29 si [9]是恶魔 -
摘要:癌症是全球最常见的死亡原因之一。脑肿瘤是一种严重且危险的肿瘤,其检测技术存在一些困难;早期肿瘤较小时很难确定其位置。本研究的目的是设计一种适合检测脑癌肿瘤的低成本微带贴片天线传感器。使用计算机仿真技术 CST Studio Suite 3D EM 仿真和分析设计了具有不同频率 2.8 GHz、3.9 GHz、5GHz 和 5.6GHz 的贴片天线,用于诊断脑肿瘤。已使用六层脑模型(脂肪、硬脑膜、脑、皮肤、脑脊液 (CSF) 和头骨)对这些共振频率(低频带 (L-B) 2 GHz、中频带 (M- B) 3.9-5 GHz 和高频带 (U-B) > 5 GHz)进行了比较研究。在脑模型上有肿瘤细胞和没有肿瘤细胞的两种情况下评估了设计的贴片传感器。已观察到三个参数,即频率相移、深度反射回波损耗和功率吸收,用于指示肿瘤细胞的存在。这项研究的结论是,中频带 (M-B) 具有良好的穿透力和更好的回波损耗深度(约 - 20dB)。同时,较高频段提供 21 MHz 相移的高分辨率,但差异回波损耗的深度值仅为 -0.1dB。所提出的工作可以为生物医学应用的贴片传感器的设计提供途径。
驱动微型和纳米力学结构以共振和观察其在物理世界中的共鸣运动,导致了物理,科学,化学,生物学和工程学以及设备商业化的许多基本发现。将机械结构从微米缩小到纳米尺寸,使谐振运动能够探测材料特性和各种动力学现象。材料科学和纳米造型的最新进展导致成功证明了超高频率运行(GHz范围)和超高质量因子(100亿)微机械谐振器(MMRS)。这些结构的共振运动已被用作一种必不可少的工具,可以在原子质量单位的分辨率下称重生物学和化学物种,感觉像Zepto-Newton一样小,并检测许多其他物理参数。在这里,提供了关于谐振传感转导的系统观点,基本的物理学以及使用微/纳米机电系统(MEMS/NEMS)技术实现的感测结构。还描述了纳米材料和结构的作用,纳米制作和理性设计在MMR的共振频率和质量因子上对高性能感测的作用。本文讨论了用于材料表征以及生物,化学和物理感测的MMR发展的最新进展。最后,本文讨论了具有高质量因子量子传感的谐振传感器的挑战和观点,以及用于量子传感的高质量因素,以及用于经典感应应用的超高灵敏度和分辨率。
摘要:合成化学将结构精确性与可重复性相结合,非常适合创建化学量子比特。化学量子比特是量子信息科学 (QIS) 系统的核心单元。通过利用合成化学固有的原子控制,我们解决了一个基本问题,即两个量子比特之间的自旋-自旋距离如何影响电子自旋相干性。为了实现这一目标,我们设计了一系列具有两个光谱不同的量子比特的分子,一个是前过渡金属 Ti 3+ ,一个是后过渡金属 Cu 2+,两种金属之间的分离不断增加。至关重要的是,我们还合成了单金属同类物作为对照。两种金属之间的光谱分离使我们能够在双金属物种中单独探测每种金属,并将其与单金属对照样品进行比较。在 1.2 – 2.5 纳米的范围内,我们发现电子自旋对相干时间的影响可以忽略不计,我们将这一发现归因于不同的共振频率。相反,相干时间由与另一个量子比特配体框架上的核自旋的距离决定。这一发现为光谱可寻址分子量子比特的设计提供了指导。