Loading...
机构名称:
¥ 3.0

驱动微型和纳米力学结构以共振和观察其在物理世界中的共鸣运动,导致了物理,科学,化学,生物学和工程学以及设备商业化的许多基本发现。将机械结构从微米缩小到纳米尺寸,使谐振运动能够探测材料特性和各种动力学现象。材料科学和纳米造型的最新进展导致成功证明了超高频率运行(GHz范围)和超高质量因子(100亿)微机械谐振器(MMRS)。这些结构的共振运动已被用作一种必不可少的工具,可以在原子质量单位的分辨率下称重生物学和化学物种,感觉像Zepto-Newton一样小,并检测许多其他物理参数。在这里,提供了关于谐振传感转导的系统观点,基本的物理学以及使用微/纳米机电系统(MEMS/NEMS)技术实现的感测结构。还描述了纳米材料和结构的作用,纳米制作和理性设计在MMR的共振频率和质量因子上对高性能感测的作用。本文讨论了用于材料表征以及生物,化学和物理感测的MMR发展的最新进展。最后,本文讨论了具有高质量因子量子传感的谐振传感器的挑战和观点,以及用于量子传感的高质量因素,以及用于经典感应应用的超高灵敏度和分辨率。

微机械机械谐振传感器

微机械机械谐振传感器PDF文件第1页

微机械机械谐振传感器PDF文件第2页

微机械机械谐振传感器PDF文件第3页

微机械机械谐振传感器PDF文件第4页

微机械机械谐振传感器PDF文件第5页

相关文件推荐

2025 年
¥1.0
2021 年
¥1.0
2021 年
¥1.0
2025 年
¥1.0
2024 年
¥2.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥2.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥2.0
2020 年
¥2.0
2020 年
¥2.0
2020 年
¥1.0
2020 年
¥2.0
2020 年
¥2.0
2022 年
¥4.0
2020 年
¥1.0
2020 年
¥3.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥2.0
2020 年
¥1.0
2020 年
¥1.0
2022 年
¥2.0
2022 年
¥1.0
2020 年
¥3.0