摘要:铁离子作为传统的高效芬顿反应催化剂,与过氧化氢反应产生羟基自由基,从而在废水中降解有机污染物。然而,在水溶液中,铁离子的化学稳定性较差,因此很难从反应培养基中恢复。我们提出,它们与双嗜嗜性块共聚物的络合可以导致形成具有改善化学和胶体稳定性的纳米催化剂。以不同的摩尔比与双嗜嗜性嵌段共聚物的溶液的溶液(即聚(氧化乙烷)-Block-Poly(丙烯酸)(丙烯酸)形成胶体结构的溶液,添加了铁离子。自发地形成高度单分散胶束,其水动力直径约为25 nm。通过结合多种技术,可以实现核心 - 壳体结构的精确描述。这些结构在3-7的pH范围内化学稳定,并通过萘酚蓝色黑色的降解成功地用作光纤维催化剂。与传统的同质芬顿反应相比,这些胶体结构具有改善的化学和胶体稳定性以及更高的可回收性。关键字:杂交Polyion复合物,胶束,块共聚物,照片芬顿,纳米催化剂,胶体
摘要:电子或核自旋,例如金刚石中的无机“氮空位”中心和硅中的其他缺陷,代表了一种很有前途的量子比特(量子位),可用于量子信息处理、数据存储以及量子传感。然而,实现大量自旋作为量子比特的可扩展和空间定义的组织仍然具有挑战性。因此,开发新材料和新技术来调节自旋-自旋距离和相互作用对于保持量子相干性和实现自旋量子比特之间的相干信息交换起着重要作用。本文,我们报告称,可以通过嵌段共聚物自组装策略实现有机自由基作为电子自旋的空间定义组织。我们证明了有机发光自由基自旋的量子相干性和自旋晶格弛豫可以通过使用一个定义明确的星形嵌段共聚物库来轻松调节,该嵌段共聚物的中心含有一个共同的三[4-(对-苄基)-2,6-二氯苯基]甲基自由基核心,通过可控的开环聚合从中接枝二嵌段聚酯。对两种聚酯嵌段的不兼容性和体积比进行微调不仅可以产生一系列自组装模式(即球体、圆柱体、薄片和螺旋体),自旋在纳米尺度上发生相分离,而且可以调节自旋晶格弛豫动力学和自旋相干寿命,这些寿命在很大程度上取决于作为分子自旋的有机自由基周围的聚合物基质的长度和刚度。这种嵌段共聚物自组装策略可能提供一种普遍适用的方法,将分子自旋作为有前途的量子位集成和组织到可扩展的架构和功能设备中,以实现量子信息处理、量子计算和自旋电子学中的前沿应用。
1化学系,科学学院,埃及开罗纳斯尔市Al-Azhar大学。2研究与发展,埃及英国公司针对特种化学品和辅助机构,埃及。摘要本研究论文通过不同的单体组成探索了基于丙烯酰胺的同型聚合物和共聚物的产生。它强调通过部分交联的单体,尤其是甲基丙烯酸酯(UMA)来提高絮凝和凝结效率。使用FT-IR,SEM和EDX光谱工具对制备的聚合物和共聚物进行表征。当使用丙烯酸作为共晶(96.67%)(96.67%)和UMA单体(98.62%)时,絮凝效率的结果表现出显着改善,而与Magnafloc®LT27AG相关的97.89%则是97.89%。此外,这项研究提供了新的基于环保的聚合物,并易于回收的潜在材料与可持续发展目标保持一致。关键词:聚丙烯酰胺;水处理;絮凝剂;逆乳液聚合1。简介
沿海地区碳钢腐蚀的成本很高,从而极大地影响了这些地方的经济。 div>涂料专门在这些条件下提供了良好的钢制保护,为此,新聚合物的持续发展是基本的。 div>在设计抗腐蚀涂料的设计中,已经使用了各种无机添加剂(其中一些具有潜在环境损害的金属)和有机物作为聚合物。 div>据报道,多多素氧化物,赤二酸的共聚物,半乙烯基 - 吡咯酮和聚二烯蛋白的共聚物是抗腐败涂料的成分。 div>这项工作的目的是获得一个电导性聚合物,该聚合物增强了炼金术涂层的保护作用。 div>关键词:抗腐蚀绘画,碳钢腐蚀,电导性聚合物,腐蚀抑制剂。 div>
通过反渗透产生饮用水和工艺水的抽象对海水和咸水水的抽象淡化已被广泛使用。,但低溶性盐的沉淀是RO植物运行中的主要问题之一。使用了几种知名技术来保护膜,而抗剂量是最广泛的。已经开发了广泛的可靠和高效抑制剂,但过去十年的趋势是创造环保(“绿色”)化学物质:低磷和可生物降解的趋势。在这项研究中,制备并测试了基于丙烯酸和甲基丙烯酸的共聚物的低磷抑制剂样品,以防止与常用化学物质相比,以防止碳酸钙沉淀。结果表明,最佳效果是使用甲基丙烯酸和丙烯酸烯丙基乙醚(RPAC-4)的几乎没有交联的共聚物,很少与丙烯酸和为酸盐乙醚(CAAC)和甲基丙烯酸和甲基酸酸和甲基甲基甲基(MAAC)的丙烯酸乙醚(CAAC)的交联的共聚物(rpac-4)。与氧乙基二苯甲酸(OEDP),硝基三甲基磷酸酸(NTP)和抑制剂“ aminat-K”相比,合成聚合物的抑制效率相同或更好。同时,对于抑制剂MAAC,在较低剂量(3 mg/l)下达到了高抗混蛋效率。关键字:碳酸钙,绿色抗毒剂,甲基丙烯酸,反渗透,尺度抑制作用,蔗糖烯丙基醚引入含有抗渗透剂(基于磷酸或磷酸)的反渗透植物浓缩物(基于磷酸或磷酸)排放到表面储层中,带来了严重的环境问题
嵌段共聚物“呼吸图”模板中的定向自组装,然后进行软水解-缩合:迈向合成仿生二氧化硅硅藻外骨骼的一步 Antoine Aynard, a,b Laurence Pessoni, a,b Laurent Billon a,b * a Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 64000, PAU, France b 仿生材料组:功能与自组装,E2S UPPA, Helioparc, 2 avenue Angot, 64053, PAU, France。 *通讯作者。电子邮件地址:laurent.billon@univ-pau.fr 关键词:自组装、呼吸图、自下而上的过程、溶胶-凝胶、仿生材料摘要
图2。PSM-CO -OMAM(共co-)聚合物的结构和表征。(a)聚合物结构显示醛平衡及其乙酰形式。(b)1 H NMR(700 MHz,d 2 O)纯化的PSM- CO-OMAM共聚物(S25 – S75)和峰分配的聚(3-磺胺甲基丙烯酸酯)均聚合物(S100)的光谱。请注意,游离醛状态(a,b,c)及其相关的乙酰形式(a*,b*,c*)的存在。在图S14中,将S25频谱作为代表性示例包括在表示a:b:c的积分比为≈1:1:1:a+a*:b+b*:c+c*是≈1:2:2。(c)纯化的S25 – S100的ATR-FTIR光谱。酰胺I和醛羧基拉伸(1637 cm -1),酰胺II带(1537 cm -1),磺酸盐(1041 cm -1)和酯(1714 cm -1)峰用点缀的线表示。S100光谱中带有星号(*)的峰与指定的酰胺I和醛峰(1648 cm -1 vs 1637 cm -1)不一致。完整的ATR-FTIR光谱可以在图S15中找到。
Bharath Dyaga,Antoine Lemaire,Shubhradip Guchait,Huiyan Zeng,Bruno Schmaltz等。掺杂剂位置在交替的供体供体 - Acceptor拷贝剂的半晶结构中的影响对极性交换P极性交换P→N机械。材料杂志化学杂志C,2023,11(47),第16554-16562页。10.1039/D3TC02416D。 hal-0460287210.1039/D3TC02416D。hal-04602872
挤出式高压电力电缆最常见的绝缘材料由低密度聚乙烯 (LDPE) 组成,必须进行交联才能调整其热机械性能。一个主要缺点是需要危险的固化剂,并且在电缆生产过程中会释放有害的固化副产物,而热固性使绝缘材料的再加工变得复杂。本观点探讨了替代概念开发的最新进展,这些概念允许通过点击化学型固化聚乙烯基共聚物或使用聚烯烃共混物或共聚物来避免副产物,从而完全消除了交联的需要。此外,聚丙烯基热塑性配方使设计绝缘材料成为可能,这些绝缘材料可以承受更高的电缆工作温度,并且在电缆达到使用寿命后通过重新熔化来促进再加工。最后,探索了聚乙烯基共价和非共价适应性网络,这可能允许结合热固性和热塑性绝缘材料在热机械性能和可再加工性方面的优势。