大型语言模型正在实现机器人口头交流的快速进步,但是非语言通讯并不能保持步伐。物理类人形机器人努力使用面部运动来表达和交流,主要依靠声音。挑战是双重的:首先,一种表达的机器人面孔的致动在机械上具有挑战性。第二个挑战是知道要产生什么表达,以使机器人看起来自然,及时和真实。在这里,我们建议通过训练机器人来预测未来的面部表情并与人同时执行它们,从而可以缓解这两个障碍。虽然延迟的面部模仿看起来不明显,但面部共表达感觉更为真实,因为它需要正确推断人的情绪状态才能及时执行。我们发现,机器人可以学会在人类的微笑之前预测即将到来的微笑,并在人类的笑容面前预测,并使用学习的逆向运动面部自我模型,同时与人同时同时表达微笑。我们使用包含26个自由度的机器人脸证明了这种能力。我们认为,同时表达面部表情的能力可以改善人类机器人的相互作用。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
摘要。白粉病(Blumeria graminis f. sp. Tritici,(Bgt))是一种世界范围内重要的小麦(Triticum aestivum)真菌叶面病害,造成严重的产量损失。因此,开发抗性基因和解剖抗性机制将有利于小麦育种。Bgt 抗性基因 PmAS846 被转移到来自 Triticum dicoccoides 的六倍体小麦品系 N9134 中,它仍然是最有效的抗性基因之一。在这里,通过 RNA 测序,我们与模拟感染植物相比,在小麦 -Bgt 相互作用中使用成对比较和加权基因共表达网络分析鉴定了三个共表达的基因模块。应激特异性模块的中心基因显著富集在剪接体、吞噬体、mRNA 监视途径、内质网中的蛋白质加工和内吞作用中。选取位于5BL染色体上的诱导模块基因构建蛋白质相互作用网络,预测其中关键的枢纽节点蛋白包括Hsp70、DEAD/DEAH盒RNA解旋酶PRH75、延长因子EF-2、细胞分裂周期5、ARF鸟嘌呤核苷酸交换因子GNOM-like、蛋白磷酸酶2C 70蛋白,并与RLP37、RPP13、RPS2类似物等多个抗病蛋白发生相互作用。基因本体富集结果表明,小麦在Bgt胁迫下可以通过mRNA转录机制激活结合功能基因。其中,GNOM-like、PP2C isoform X1和跨膜9超家族成员9被定位到距离为4.8 Mb的PmAS846基因片段上。该研究为深入理解抗病机制及克隆抗病基因PmAS846奠定了基础。
化学氮肥可以维持作物生产力,但是化学氮肥过度使用会导致经济成本和环境污染。减少氮肥使用使用的一种方法是将氮酶生物合成途径转移到非乳状植物中。Fe蛋白是氮酶的两个结构成分。NIFB是一个关键的成熟酶,它催化了结合和减少n 2的氮酶Femo-Concactor的生物合成中的第一个投入步骤。NIFB,NIFH,NIFD和NIFK的表达对于产生能够固定大气N 2的植物至关重要。在这项研究中,Paenibacillu Polymyxa Wly78的四个基因(NIFB,NIFB,NIFD和NIFK)通过CRE/LOXP重组系统组装在植物表达vector PCAMBIA1301中,从而产生重组表达vector PCAM- bia1301301-nifbhdk。然后,使用tumefaciens介导的转化将表达载体中携带的四个NIF基因共同融入了高地棉R15。通过PCR和RT-PCR选择了T 3代的纯合转基因棉线B2,B5和B17。QRT-PCR显示,NIFB,NIFH,NIFD和NIFK在类似水平的转基因棉中共表达。Western印迹分析表明,NIFB,NIFH,NIFD和NIFK是在转基因棉中共同生产的。棉花中四种关键的NIF蛋白(NIFB,NIFH,NIFD和NIFK)的共表达是工程氮酶生物合成途径的重要一步。
神经精神疾病在遗传上很复杂,遵循由数千种风险变异和基因组成的多基因结构。1 与孟德尔遗传病(可通过分析单个基因获得可推广的机制见解)不同,复杂遗传病的病因围绕基因的功能组或通路进行组织。1 预计这些组中的基因将共同调节并在允许通路发挥作用的水平上表达。2,3 RNA 共表达和蛋白质-蛋白质相互作用 (PPI) 网络为理解此类基因组的组织方式提供了强大的概念框架,并具有预测能力,可优先考虑多基因疾病中的疾病相关变异。4,5,6 该框架通过将基因排列成更小、更易处理且连贯的模块集以进行实验分析,有助于表征相关的生物通路。此外,基因共表达网络可以通过将目标组织中普遍存在的细胞类型和细胞状态共同变化的基因连接在一起,进一步加深我们对复杂多基因疾病的理解。 7,8
神经精神疾病在遗传上很复杂,遵循由数千种风险变异和基因组成的多基因结构。1 与孟德尔遗传病(可通过分析单个基因获得可推广的机制见解)不同,复杂遗传疾病的病因围绕基因的功能组或通路进行组织。1 预计这些组中的基因将共同调节并在允许通路发挥作用的水平上表达。2,3 RNA 共表达和蛋白质-蛋白质相互作用 (PPI) 网络为理解此类基因组如何组织提供了一个强大的概念框架,并具有预测能力,可以优先考虑多基因疾病中的疾病相关变异。4,5,6 该框架通过将基因排列成更小、更易处理且连贯的模块集以进行实验分析,有助于表征相关的生物通路。此外,基因共表达网络可以通过将目标组织中普遍存在的细胞类型和细胞状态共同变化的基因连接在一起,进一步加深我们对复杂多基因疾病的理解。 7,8
抽象理解导致疾病发作和进展的因果过程对于发展新型疗法至关重要。尽管反式 - 作用表达定量性状基因座(反式-EQTL)可以直接揭示由疾病变体调节的细胞过程,但由于其小效应大小,检测反式eqtls仍然具有挑战性。在这里,我们分析了来自226至710个个体的六种血细胞类型的基因表达和基因型数据。我们使用从基因表达数据中推断出使用五种方法的共表达模块作为反式-EQTL分析中的特征来限制多重测试并提高可解释性。除了复制三个已建立的关联外,我们还发现了SLC39A8附近的一种新颖的反式 - EQTL,它调节了LPS刺激的单核细胞中的金属硫蛋白基因模块。有趣的是,这种效应是由瞬态顺式-EQTL介导的,仅在早期LPS响应中存在,并且在反式效应出现之前就丢失了。我们的分析重点介绍了共表达与功能富集分析的结合如何改善当应用于新兴细胞类型特异性数据集时,可以改善反式-EQTL的识别和优先级。
研究最多的二级神经组织者是地缘组织者,该组织者位于神经管的中脑过渡中,并控制前后脑前后和中脑区域化。OTX2和GBX2表达式对于定位组织者和诱导FGF8的分子相互作用的建立是基本的。我们在这里提出的证据表明OTX2和GBX2在地峡区域具有重叠的表达。该区域是诱导FGF8表达的横向结构域。地峡中产生的FGF8蛋白稳定并上调GBX2表达,从而下调OTX2表达。GBX2/OTX2极限的电感效应保持FGF8表达稳定,因此在PAX2,EN1,2和WNT1的表达中保持了积极的作用。Q 2001 Elsevier Science Ireland Ltd.保留所有权利。Q 2001 Elsevier Science Ireland Ltd.保留所有权利。
构建共表达模块,对这些样本进行聚类分析,结果如图S4A所示。然后,我们筛选出软阈值功率(图3A),当功率值等于16时,独立度可达0.9,因此利用功率值构建共表达模块,结果显示共鉴定出18个不同的基因共表达模块(图3B)。我们分析了模块特征基因与群体性状的相关性,发现只有一个共表达模块与SP和MP显著相关(图3C)。蓝色模块中有1154个基因与SP呈负相关。我们对蓝色模块中的基因进行PPI网络分析,描绘了整个网络和前3个子网络(图
自闭症风险基因共表达的转录模式集中于已建立的和新的神经发育特征 Calwing Liao 1,2 , Mariana Moyses-Oliveira 3,4,5 , Celine EF De Esch 3,4,5 , Riya Bhavsar 3,4,5 , Xander Nuttle 3,4,5 , Aiqun Li 6,7,8,9,10 , Alex Yu 6,7,8 , Nicholas D. Burt 3,4,5 , Serkan Erdin 3,4,5 , Jack M. Fu 3,4,5 , Minghui Wang 6,7,8 , Theodore Morley 11 , Lide Han 11 , CommonMind Consortium, Patrick A. Dion 2 , Guy A. Rouleau 1,2 , Bin Zhang 6,7,8 , Kristen J. Brennand 6,7,8,9,10,12,Michael E. Talkowski 3,4,5,Douglas M. Ruderfer 11,13,* 1. 加拿大魁北克省蒙特利尔市麦吉尔大学人类遗传学系。2. 加拿大魁北克省蒙特利尔市麦吉尔大学蒙特利尔神经病学研究所医院。3. 美国马萨诸塞州波士顿市麻省总医院基因组医学中心 02114。4. 美国马萨诸塞州剑桥市麻省理工学院和哈佛大学布罗德研究所医学和群体遗传学项目 02142。5. 美国马萨诸塞州波士顿市麻省总医院和哈佛医学院神经病学系 02114。6. 美国纽约州纽约西奈山伊坎医学院遗传学和基因组科学系 10029。 7. 西奈山转化疾病模型中心,伊坎西奈山医学院,纽约州纽约市 10029,美国。8. 伊坎西奈山医学院,伊坎数据科学与基因组技术研究所,纽约州纽约市 10029,美国。9. 纳什家族神经科学系,伊坎西奈山医学院,纽约州纽约市 10029,美国。10. 弗里德曼脑研究所,伊坎西奈山医学院,纽约州纽约市 10029,美国。 11. 范德堡大学医学中心范德堡遗传研究所医学系遗传医学分部,1211 Medical Center Dr. Nashville, TN 37232 USA 12. 耶鲁大学精神病学系,纽黑文,CT 06511 USA 13. 范德堡大学医学中心生物医学信息学系和精神病学和行为科学系,1211 Medical Center Dr. Nashville, TN 37232 USA *通讯作者:Douglas M. Ruderfer ( douglas@ruderfer@vanderbilt.edu ) 摘要 自闭症谱系障碍 (ASD) 是一种高度遗传的神经发育障碍,其特征是社交互动和沟通障碍。许多基因中蛋白质功能的改变变异已被证明会增加 ASD 风险;然而,了解如此多基因之间的生物学趋同一直很困难。在这里,我们证明人类死后脑样本 (N=993) 的共表达模式与神经元细胞模型中 15 个神经发育基因的 CRISPR 扰动(基因编辑、干扰和激活)的转录结果显着相关。我们发现在 70 个 ASD 风险基因中,存在显着的组织特异性转录趋同,这涉及突触通路。我们进一步表明,收敛程度与测序研究中与 ASD 的关联水平(rho = -0.14,P = 4.75x10 -63)以及尸检 ASD 大脑转录研究中的差异表达(rho = -0.22,P = 3.62x10 -41)显着相关。在去除与 ASD 关联证据最少的基因后,剩余的正收敛基因不耐受突变,编码长度较短,并且富含有提示对 ASD 有贡献的证据的基因。这些结果表明,利用收敛共表达可以识别新的 ASD 风险基因,这些基因更有可能被低估,因此被当前的大规模测序研究遗漏。这项工作最终提供了一种功能代理 CRISPR 扰动的简单方法,展示了已知 ASD 风险基因之间显着的上下文特异性转录收敛,并提出了几个新的 ASD 风险基因候选物。简介自闭症谱系障碍 (ASD) 是一种高度遗传的神经精神疾病,人口患病率约为 1% 1 。测序研究表明,与对照组相比,病例组中罕见的有害变异过多,导致数十种基因导致 ASD 风险 2–5 。这些发现突触功能、染色质和转录调控等 ASD 生物学途径 2,3 是与自闭症有关的。转录组学研究提供了特发性 ASD 患者死后大脑中突触基因下调以及免疫基因上调的证据 6,7 。最近,PsychENCODE 联盟在一组更大的死后人类大脑样本中证实了这些结果染色质和转录调控 2,3。转录组学研究提供了特发性自闭症患者死后大脑中突触基因下调以及免疫基因上调的证据 6,7。最近,PsychENCODE 联盟在一组更大的死后人类大脑中证实了这些结果染色质和转录调控 2,3。转录组学研究提供了特发性自闭症患者死后大脑中突触基因下调以及免疫基因上调的证据 6,7。最近,PsychENCODE 联盟在一组更大的死后人类大脑中证实了这些结果