• 虽然本演讲中讨论的主题可能适用于广泛的生物偶联物,但观点主要涉及抗体-药物偶联物和聚乙二醇化蛋白质,这些是提交给我们部门的最常见药物
摘要:光生自旋关联自由基对固有的自旋极化使其成为量子计算和量子传感应用的有希望的候选者。可以使用电子顺磁共振波谱仪通过微波脉冲探测和操纵这些系统的自旋态。然而,到目前为止,还没有关于基于磁共振的量子点上光生自旋关联自由基对自旋测量的报道。在当前的工作中,我们制备了染料分子 - 无机量子点共轭物,并表明它们可以产生光生自旋极化态。选择染料分子 D131 是因为它能够进行有效的电荷分离,而选择纳米粒子材料 ZnO 量子点是因为它们有希望的自旋特性。对 ZnO 量子点 - D131 共轭物进行的瞬态和稳态光谱表明正在发生可逆的光生电荷分离。然后对光生自由基对进行瞬态和脉冲电子顺磁共振实验,结果表明:1)自由基对在中等温度下极化,现有理论可以很好地模拟;2)自旋状态可以通过微波脉冲获取和操控。这项工作为一种新型有前途的量子比特材料打开了大门,这种材料可以在极化状态下光生,并由高度可定制的无机纳米粒子承载。
摘要:最近,靶向纳米粒子 (NPs) 因其作为药物输送载体的巨大潜力而在癌症治疗中引起了广泛关注。在本文中,我们介绍了一种新型生物共轭物 (DOX-AuNPs-Tmab),它由附着在化疗药物阿霉素 (DOX) 和单克隆抗体曲妥珠单抗 (Tmab) 上的金纳米粒子 (AuNPs,30 nm) 组成,该生物共轭物表现出与 HER2 受体的特异性结合。通过 TEM (透射电子显微镜) 和 DLS (动态光散射) 方法分析了合成的 AuNPs 的大小和形状及其表面改性。对 SKOV-3 细胞系 (HER2+) 进行了生物学研究,结果表明该生物共轭物对受体具有高度的结合特异性和内化能力,而 MDA-MB-231 细胞 (HER2 −) 则没有。细胞毒性实验表明,用 DOX-AuNPs-Tmab 处理的癌细胞代谢活性降低,球体的表面积减少。生物共轭物主要诱导细胞周期 G2/M 期停滞和晚期凋亡。我们的结果表明 DOX-AuNPs-Tmab 在 HER2 阳性肿瘤的靶向治疗方面具有巨大潜力。
a Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, 08041, Spain b Josep Carreras Leukemia Research Institute, Barcelona, 08916, Spain c CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 280 Spain Advanced Institute of Chemistry (IIB), CSIC, Barcelona, 08034, Spain and Institute of Biotechnology and Biomedicine (IBB), Universitat Aut ` onoma de Barcelona, Bellaterra, 08193, Spain f Department of Genetics and Microbiology, Universitat Aut ` onoma de Barcelona, Bellaterra, 08 13, Spain g Pathology Hospital, Santa Claus u, Barcelona, 08025, Spain h Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain i CIBER de Diabetes y Enfermedades Metab ́ olicas Asociadas (CIBERDEM), Madrid, 28029, Spain
摘要:选择性治疗和在细胞内控制药物释放仍然是有效治疗癌症的关键挑战。在这里,我们使用叶酸(FA)作为自导航分子,在含有量子点(QDs)和β-环糊精(β-CD)的纳米共轭物中将抗肿瘤不对称双吖啶化合物(C-2028)递送至肺癌、前列腺癌和正常细胞。由于双吖啶衍生物结构中存在平面片段,因此可以与β-环糊精分子形成包合物。这种复合物的稳定性依赖于pH值。研究了不同pH值下的药物释放曲线和C-2028从QDs-β-CD-FA纳米共轭物中释放的机理。接下来,还研究了化合物在细胞内的命运及其对细胞内溶酶体含量的影响。共聚焦激光扫描显微镜研究证明,所有研究的化合物都被输送到酸性细胞器中,其 pH 值促进了 C-2028 从其纳米缀合物中释放的增加。由于正常细胞中的 pH 值高于癌细胞中的 pH 值,因此这些细胞中 C-2028 从其纳米缀合物中的释放会减少。此外,我们通过 HPLC 分析获得了用未结合的 C-2028 或纳米缀合物处理的选定细胞中 C-2028 的浓度曲线。
摘要:选择性治疗和在细胞内控制药物释放仍然是有效治疗癌症的关键挑战。在这里,我们使用叶酸(FA)作为自导航分子,在含有量子点(QDs)和β-环糊精(β-CD)的纳米共轭物中将抗肿瘤不对称双吖啶化合物(C-2028)递送至肺癌、前列腺癌和正常细胞。由于双吖啶衍生物结构中存在平面片段,因此可以与β-环糊精分子形成包合物。这种复合物的稳定性依赖于pH值。研究了不同pH值下的药物释放曲线和C-2028从QDs-β-CD-FA纳米共轭物中释放的机理。接下来,还研究了化合物在细胞内的命运及其对细胞内溶酶体含量的影响。共聚焦激光扫描显微镜研究证明,所有研究的化合物都被输送到酸性细胞器中,其 pH 值促进了 C-2028 从其纳米缀合物中释放的增加。由于正常细胞中的 pH 值高于癌细胞中的 pH 值,因此这些细胞中 C-2028 从其纳米缀合物中的释放会减少。此外,我们通过 HPLC 分析获得了用未结合的 C-2028 或纳米缀合物处理的选定细胞中 C-2028 的浓度曲线。
FDA研究人员开发了用于制备包括疫苗在内的多价免疫结合物的新方法。通过使用氢化化学来合成多价免疫原性共轭物,将多种多糖(以所需比例)与至少一个载体蛋白的结合混合物(以多种比例为单位)结合。基于肼的化学方法在将多糖与载体蛋白结合在一起方面非常有效,从而导致疫苗在诱导每种多糖成分的小鼠抗体方面非常有效。共轭方法也不需要复杂的纯化程序,例如色谱和/或硫酸铵沉淀,
摘要:共价闭合的哑铃形DNA递送载体,包括双端的双链基因和两端的单链发夹环,代表了一种安全,稳定且有效的替代病毒和其他基于非病毒DNA的矢量系统。与质粒和DNA微圆相反,哑铃可以通过辅助函数通过环与靶向递送或成像结合。在这里,我们研究了三年期N-乙酰乳糖苷(GALNAC3)或CD137/4-1BB结合适体(APTCD137-2)的同二聚体的非共价连接,以通过与诸如寡核的元素交付或耐心的近似元素送达或纳入的dumbbell vector vector循环。将哑铃环的大小从4个核苷酸扩大到71个核苷酸并不会损害基因表达。GalNAC3和APTCD137-2残基通过互补寡核苷酸成功地连接到扩展的哑铃环上。DNA和RNA寡核苷酸基基核苷酸 - GALNAC3共轭物被肝母细胞瘤衍生的人体组织培养细胞(HEPG2)从细胞培养基中吸收,具有可比的效率。RNA寡核苷酸连接的共轭物触发了稍高的基因表达水平,这可能是由于RNASEH介导的接头裂解,GALNAC3残基中的哑铃释放,以及更多的未偶联哑铃DNA的核靶标。在体外确认了RNASEH触发的RNA接头裂解。最后,我们以表达肝癌细胞特异性RNA反式解放的自杀RNA和GalNAC3残基的哑铃载体。哑铃与两个GalNAC3残基共轭时,当添加到细胞培养基中时,触发了显着水平的细胞死亡。哑铃矢量偶联物可以探索靶向递送和基因治疗应用。