突变或遗传工程,及其涉及的 DNA 或 RNA, 载体 ( 如质粒 ) 或其分理、制备 或纯化;所使用的宿主 Mutation or genetic engineering; DNA or RNA concerning genetic engi- neering, vectors, e. g. plasmids, or their isolation, preparation or purifica- tion; Use of hosts therefor 酶;酶原;其组合物、制备、活化、抑制、分离或纯化酶的方法 Enzymes, e. g. ligases; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating, or purifying enzymes 微生物本身,如原生动物;及其组合物;繁殖、维持或保藏微生物或其组 合物的方法;制备或分离含有一种微生物的组合物的方法;及其培养基 Microorganisms, e.g. protozoa; Compositions thereof; Processes of propa- gating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorgan- ism; Culture media therefor 具有多于 20 个氨基酸的肽;促胃液素;生长激素释放抑制因子;促黑激 素;其衍生物 Peptides having more than 20 amino acids; Gastrins; Somatostatins; Mela- notropins; Derivatives thereof 饲养或养殖其他类不包含的动物;动物新品种 Rearing or breeding animals, not otherwise provided for; New breeds of animals 包含酶、核酸或微生物的测定或检验方法;其组合物;这种组合物的测定方法 Measuring or testing processes involving enzymes, nucleic acids or microor- ganisms; Compositions therefor; Processes of preparing such compositions
虽然 ICO 制定的指南包含大量有用信息,但往往篇幅过长,有时内容重叠,且起草风格不一致。因此,组织可能很难知道从哪里开始,或者各个指南如何组合在一起。但是,去年 11 月,它发布了有关如何更好地使用 AI 的提示(如下所述)。本指南相对较短且内容丰富,使其成为组织更易于访问的起点。ICO 的 AI 风险缓解工具包于去年完成,也旨在为组织提供更实用的支持。这两种新资源还链接到更详细指南的相关部分。除了指南和工具包之外,ICO 的监管沙盒也是 AI 公司的有用资源。
此类任务同样可以先离线学习状态转移预测模 型再使用 MPC 计算控制输入 [28-29] ,或直接使用强 化学习方法 [68-69] ,但需要大量训练数据且泛化性较 差。在准静态的局部形变控制中,更常用的方法是 在线估计局部线性模型。该模型假设线状柔性体形 状变化速度与机器人末端运动速度在局部由一个雅 可比矩阵 JJJ 线性地联系起来,即 ˙ xxx ( t ) = JJJ ( t ) ˙ rrr ( t ) ,其 中 ˙ xxx 为柔性体形变速度, ˙ rrr 为机器人末端运动速度。 由于使用高频率的闭环反馈来补偿模型误差,因此 完成任务不需要非常精确的雅可比矩阵。 Berenson 等 [70-71] 提出了刚度衰减( diminishing rigidity )的概 念,即离抓取点越远的位置与抓取点之间呈现越弱 的刚性关系,并据此给出了雅可比矩阵的近似数学 表示。此外,常用的方法是根据实时操作数据在线 估计雅可比矩阵,即基于少量实际操作中实时收集 的局部运动数据 ˙ xxx 和 ˙ rrr ,使用 Broyden 更新规则 [72] 、 梯度下降法 [73] 、(加权)最小二乘法 [33-34,74] 或卡尔 曼滤波 [75] 等方法在线地对雅可比矩阵进行估计。 该模型的线性形式给在线估计提供了便利。然而, 雅可比矩阵的值与柔性体形状相关,因此在操作 过程中具有时变性,这使得在线更新结果具有滞 后性,即利用过往数据更新雅可比矩阵后,柔性体 已经移动至新的形状,而新形状对应的雅可比矩阵 与过往数据可能并不一致。同时,完整估计雅可比 矩阵的全部元素需要机器人在所有自由度上的运 动数据,这在实际操作过程中难以实现,为此一些 工作提出根据数据的奇异值进行选择性更新或加 权更新 [74] 。此外,此类方法需要雅可比矩阵的初 值,一般在操作前控制机器人沿所有自由度依次运 动,收集数据估计初始位置的雅可比矩阵。受上述 问题影响,在线估计方法往往仅适用于局部小形变 的定点控制,难以用于长距离大形变的轨迹跟踪。 Yu 等 [31] 提出 ˙ xxx = JJJ ( xxx , rrr ) ˙ rrr 的模型形式,其中 JJJ ( · ) 为 当前状态至雅可比矩阵的非线性映射,待估计参数 为时不变形式。基于该模型,该方法将离线学习与 在线更新无缝结合,实现了稳定、平滑的大变形控 制。 Yang 等 [76-77] 使用模态分析方法建立柔性体模
要确定您需要携带哪些文件,例如出生证明、结婚证或离婚判决书,请阅读国防部身份和资格文件要求 (https://www.cac.mil/Portals/53/Documents/List_of_Acceptable_Documents.pdf)。如果您的情况未列出,请联系您最近的军人身份证签发机构获取说明。
第一章区块链技术概述 1. 人工智能AI,区块链Blockchain,云计算Cloud 和数据科学Data Science。 人工智能:生产力变革。大数据:生产资料变革。区块链:生产关系变革。 2. 可信第三方: 交易验证,交易安全保障,历史记录保存->价格昂贵,交易速 度嘛,欺诈行为。 区块链: 去中心的清算,分布式的记账,离散化的支付。任 何达成一致的无信任双方直接交易,不需要第三方中介。注意:信用破产,绝 对中心化,不透明无监管。 3. 区块链: 用于记录比特币交易账目历史的数据结构,每个区块的基本组成都 由上个区块的散列值、若干条交易及一个调节数等元素构成,矿工通过工作量 证明来维持持续增长、不可篡改的数据信息。区块链又称为分布式账本,是一 种去中心化的分布式数据库。 区块链技术 是在不完全可信的环境中,通过构建 点对点网络,利用链式数据结构来验证与存储数据,借助分布式共识机制来确 定区块链结构,利用密码学的方式保证数据传输和访问的安全,利用由自动化 脚本代码组成的智能合约来编程和操作数据。 4. 体系结构:数据层: 封装了区块链的底层数据存储和加密技术。每个节点存 储的本地区块链副本可以被看成三个级别的分层数据结构:区块链、区块、区 块体。每个级别需要不同的加密功能来保证数据的完整性和真实性。 网络层: 网格网络,权限对等、数据公开,数据分布式、高冗余存储vs 轴辐网络,中央 服务器分配权限,多点备份、中心化管理。 共识层: 能够在决策权高度分散的 去中心化系统中使得各节点高效地针对区块数据的有效性达成共识。出块节点 选举机制和主链共识共同保证了区块链数据的正确性和一致性,从而为分布式 环境中的不可信主体间建立信任关系提供技术支撑。 激励层: 经济因素集成到 区块链技术体系中,包括经济激励的发行机制和分配机制等。公有链:激励遵 守规则参与记账的节点,惩罚不遵守规则的节点,使得节点最大化自身收益的 个体理性行为与保障去中心化的区块链系统的安全和有效性的整体目标相吻合, 整个系统朝着良性循环的方向发展。私有链:不一定激励,参与记账的节点链 外完成博弈,通过强制力或自愿参与记账。 合约层: 封装区块链系统的各类脚 本代码、算法以及由此生成的更为复杂的智能合约。数据、网络和共识三个层 次作为区块链底层“虚拟机”分别承担数据表示和存储、数据传播和数据验证功能, 合约层建立在区块链虚拟机之上的商业逻辑和算法,是实现区块链系统灵活编 程和操作数据的基础。智能合约是一个在计算机系统上,当一定条件被满足的 情况下,可以被自动执行的合约(程序)区块链上的智能合约,一是数据无法 删除、修改,保证了历史的可追溯,作恶成本很高,其作恶行为将被永远记录; 二是去中心化,避免了中心化因素的影响。 应用层: 区块链技术是具有普适性 的底层技术框架,除可以应用于数字加密货币外,在经济、金融和社会系统中 也存在广泛的应用场景。 5. 区块链特征 :去中心,去信任;开放,共识;交易透明,双方匿名;不可篡 改,可追溯。 区块链分类: 公有链: 无官方组织及管理机构,无中心服务器, 参与的节点按照系统规则自由接入网络、不受控制,节点间基于共识机制开展 工作。 联盟链: 由若干机构联合发起,介于公有链和私有链之间,兼具部分去 中心化的特性。 私有链: 建立在某个组织内部,系统的运作规则根据组织要求 设定,修改甚至是读取权限仅限于少数节点,同时仍保留着区块链的真实性和 部分去中心化特征。 无许可区块链: 一种完全去中心化的分布式账本技术,允 许节点自由加入和退出,无需通过中心节点注册、认证和授权,节点地位平等, 共享整个账本。 许可区块链: 存在一个或多个具有较高权限的节点,可以是可 信第三方,也可以是协商制定有关规则,其他节点只有经过相应授权后才可访 问数据,参与维护。 6. 数字货币:区块链1.0 旨在解决交易速度、挖矿公平性、能源消耗、共识方 式以及交易匿名等问题,参照物为比特币(BTC)。区块链2.0 旨在解决数据隐 私、数据存储、区块链治理、高吞吐量、域名解析、合约形式化验证等问题, 参照物为以太坊(ETH)。
功能说明 1、模式设置 本芯片为单线双通道通讯,采用归一码的方式发送信号。芯片接收显示数据前需要配置正确的工作 模式,选择接收显示数据的方式。模式设置命令共48bit,其中前24bit为命令码,后24bit为检验反码, 芯片复位开始接收数据,模式设置命令共有如下3种: (1)0xFFFFFF_000000命令: 芯片配置为正常工作模式。在此模式下,首次默认DIN接收显示数据,芯片检测到该端口有信号输 入则一直保持该端口接收,如果超过300ms未接收到数据,则切换到FDIN接收显示数据,芯片检测到该 端口有信号输入则一直保持该端口接收,如果超过300ms未接收到数据,则再次切换到DIN接收显示数据。 DIN和FDIN依此循环切换,接收显示数据。 (2)0xFFFFFA_000005命令: 芯片配置为DIN工作模式。在此模式下,芯片只接收DIN端输入的显示数据,FDIN端数据无效。 (3)0xFFFFF5_00000A命令: 芯片配置为FDIN工作模式。在此模式下,芯片只接收FDIN端输入的显示数据,DIN端数据无效。 2、显示数据
技术一直伴随着我们,成就了我们。自人类诞生以来,技术就塑造了我们彼此之间以及与周围世界的关系。然而,近年来,在自动算法和人工智能的推动下,计算技术的发展加速,以前所未有的方式重新配置了许多这些关系。基于机器、人工智能驱动的对人类和非人类生命、行为和实践的量化和生物特征测量只是其中几个例子,它们促使我们思考:在当今的技术文化中,我们如何在个人、社会、环境甚至生存层面上相互联系以及与共同的环境建立联系?技术以及从前到后塑造技术的人如何协商、调解和操纵这些关系?《关系技术、技术关系》源于一项名为“BioMe:生物特征人工智能在日常生活中的生存挑战和道德要求”的研究项目的讨论,该项目由乌普萨拉大学的 Amanda Lagerkvist 教授领导。该项目的核心目标是研究与这些技术接触的体验范围,重点关注它们的可能性、挑战和弱点,以研究它们对网络人类提出的紧迫的道德要求。本次活动标志着 BioMe 项目的结束,重点关注艺术家、批判媒体从业者以及其他富有创造力的个人和集体如何在实践和概念上参与自动化、监控、生命测量技术以及日常生活中生物统计协调的现实。