摘要 — 随着 5G 标准化的巩固,研究人员正在猜测 6G 将会是什么样子。传感功能的集成正在成为 6G 无线接入网络 (RAN) 的一个关键特性,允许利用密集的蜂窝基础设施来构建感知网络。在这篇 IEEE 通信选定领域期刊 (JSAC) 特刊概述中,我们全面回顾了集成传感和通信 (ISAC) 的背景、主要应用范围和最新方法。我们首先从历史的角度讨论传感和通信 (S&C) 之间的相互作用,然后考虑 ISAC 的多个方面及其带来的性能提升。通过介绍正在进行和潜在的用例,我们阐明了与 ISAC 相关的行业进展和标准化活动。我们分析了 S&C 之间的许多性能权衡,包括信息
概率机器学习的最新进展已导致单纯形上的新分布家族。这种分布称为连续的分类,与Dirichlet具有相似之处,因为它定义了一个特别简单的封闭形式密度的指数族。然而,与Dirichlet(或任何基于对数的方法)不同,即使在零价值的组件存在下,连续的分类对数 - 样品函数也可以很好地定义,这使得此分布成为零元素组成数据的有效可能性模型,而无需归因于Zeros的插入。在此摘要中,我们回顾了我们的新颖分布的关键特性,并提出了一种应用,可以将其用于降低组成数据的尺寸。我们还突出了机器学习领域与组成数据分析之间的一些未置换的连接,我们的新颖分布密切相关。
摘要:材料合成是储能技术开发的关键步骤,从首次合成新预测的材料到优化已建立材料的关键特性。虽然固态材料的合成传统上依赖于直觉驱动的反复试验,但现在正在出现计算方法,以加速改善合成食谱的识别。从这个角度来看,我们探讨了这些技术,并专注于它们指导前体选择固态合成的能力。在电池的材料的背景下讨论了每种方法的适用性,包括锂离子阴极和全稳态电池的实心电解质。我们的分析展示了这些计算方法的有效性,同时也突出了它们的局限性。基于这些发现,我们为未来的发展提供了前景,这些发展可以解决现有的局限性,并在电池材料的综合设计方面取得了进展。t
复合材料和混合材料在大型和结构部件中的应用和可信度已得到充分认可。推进应用包括风扇外壳和叶片。高性能合金盘正在考虑提高刚度和减轻重量,尽管成本是一个障碍。结构应用包括单元化主结构和切换到非热压罐工艺,这些工艺需要高水平的工艺内控制才能满足关键特性要求。制造过程缓慢,原材料和产品质量参差不齐;成本可能很高。人们对新型复合材料在工艺过程中和整个使用寿命中的性能了解甚少;由此产生的问题包括对工厂尺寸和特征的预测不佳,以及对整个使用寿命性能和冲击弹性的理解不完整。
本文概述了欧盟资助的 Horizon 2020 合作项目 CENTRELINE(“机身尾流填充推进集成概念验证研究”)正在进行的研究及其中期结果,旨在展示一种突破性的协同推进机身集成方法的概念验证,即所谓的推进机身概念 (PFC)。该概念的特点是将涡轮电力驱动的推进装置集成在机身的最后部分,专用于机身尾流填充。目前,CENTRELINE 处于 TRL 1-2 阶段,其目标是将 PFC 的技术关键特性成熟到 TRL 3-4 阶段。目标概念验证的核心由两个实验测试活动组成,这些测试活动由高保真 3D 数值模拟和集成多学科设计优化技术提供支持,用于空气动力学、航空结构以及能源和推进系统。
传统透明导电氧化物 (TCO) 的技术策略是采用简并掺杂宽带隙半导体来实现两个关键特性:电导率和光学透明度。宽带隙半导体被选为主体材料,其带间跃迁高于可见光谱,而掺杂剂则增加载流子密度,从而提高电导率。锡掺杂氧化铟 (ITO) 因其在可见光谱中实现了高电导率和光学透明度的最佳平衡而得到广泛应用。[3] 然而,由于铟矿的供应有限,ITO 用作 TCO 的使用越来越多,导致 ITO 成本上升。[4] 同时,许多其他应用,如日盲探测、紫外 (UV) 光刻、紫外发光二极管和紫外固化,都需要紫外光谱中的透明导体。[5–8] 然而,传统的高电导率 TCO 在光谱的紫外侧表现出低透射率。 [1]
在很大程度上,现代检测器获得的数据准确性基于计数单光子的能力。但是,您只能计算“看到”的内容。在常规硅传感器中,Ag辐射的三分之二的传感器通过传感器传递,因此从未被检测到。因此,吸收效率是每个检测器的关键特性,因为它直接影响了I/σ,尤其是非常弱反射的数据质量。Bruker Photon III结合了最新的混合模式技术与优化的X射线闪烁体。这种方法优化了X射线吸收和信号增益,消除了视差效应并获得更准确的数据。新的Photon III,他用一个新的,优化的闪烁体扩展了这一概念,以实现MO,AG和IN的近乎理想的量子效率。
简介 RAID 一直被认为是确保可靠存储的基础技术。然而,在云计算和大数据时代,RAID 已无法满足新应用程序的海量数据增长。因此,人们开始寻找能够提供超大规模容量和能力的新存储技术。Ceph 是解决这些问题的代表性存储,也是最流行的软件定义存储 (SDS) 解决方案之一。SDS 解决方案利用商用硬件来降低存储的总拥有成本、采购成本和运营成本。Ceph 的分布式架构能够为大容量应用程序存储大量数据,并通过多份数据副本消除任何单点故障以实现灾难恢复。Ceph 现在已成为 OpenStack 的原生存储,并已部署在全球多个国家/地区。Ceph 有三个关键特性使其不同于其他 SDS 解决方案:
Waveform-LiDAR 利用了两个关键特性:首先,脉冲飞行时间激光雷达的返回信号(从光学状态转换为电状态后)通过高采样率的模数转换器 (ADC) 进行数字化,同时覆盖宽动态范围。其次,数字化的回波信号会进行详细分析(信号检测和信号估计)——在线或离线——提供功能丰富的测距结果,包括目标的精确距离、信号强度以及从接收到的回波信号的实际形状得出的属性。结合角度测量和运动激光雷达应用中集成 IMU/GNSS 系统的测量,生成的 3D 点云不仅具有几何形状,还具有经过校准的附加属性,如振幅和反射率估计,从而简化了进一步的处理,如配准、地理参考和过滤。
人体中所有相互滑动接触的表面均由亲水性生物聚合物构成的柔软、透性组织构成。 [1] 此类系统的一个关键特性是低摩擦,从而减少磨损并确保相互滑动的表面具有较长的使用寿命。 [2] 人体中极其有效的润滑(例如滑膜关节和眼睑-角膜界面)启发了许多关于人造材料摩擦学的研究,尤其是模拟这种行为的水凝胶。 [3–10] 软组织或水凝胶中发生的润滑现象不同于两个由流体润滑的硬表面相互滑动时的摩擦机制 [2,10–12],因为在这种软系统中,膨胀的固体基质与该基质内流体之间的相互作用在决定摩擦行为方面起着重要作用。 [7,9,13–16]