兴奋性/抑制(E/I)平衡是指兴奋性神经递质(例如谷氨酸)之间的动态调节,这些兴奋性神经递质促进神经元释放和抑制性神经递质,例如抑制神经元的γ-氨基抑制剂(GABA),抑制神经元的活性[1]。e/i平衡是几种大脑功能的基础,包括感觉处理,学习,记忆和认知。对E/I信号的精确调节可确保神经元有效地通信而不会过度兴奋或抑制,这可能导致网络不稳定性或功能障碍。E/I平衡中的破坏与各种神经和精神疾病有关[2]。例如,在癫痫中,过量的兴奋活动或抑制性控制的不足会导致不受控制的神经元发射,从而导致癫痫发作[3]。 在自闭症谱系障碍(ASD)中,E/I平衡的改变被认为有助于感觉处理异常和认知缺陷[2]。 精神分裂症是E/I不平衡的另一个条件,具有破坏的抑制性信号传导,尤其是涉及GABA能中间神经元,潜在的潜在的认知和感知障碍[4]。 在麻醉期间,E/I平衡也受到深远的影响。 麻醉剂通常会增强抑制性神经传递和/或减少兴奋性神经传递,以诱导可逆的意识和感觉丧失[5]。 例如,一种常用麻醉剂的氯胺酮充当NMDA受体拮抗剂,导致兴奋性信号传导和皮质和皮质下神经活性的调节降低[6]。 同样,例如,在癫痫中,过量的兴奋活动或抑制性控制的不足会导致不受控制的神经元发射,从而导致癫痫发作[3]。在自闭症谱系障碍(ASD)中,E/I平衡的改变被认为有助于感觉处理异常和认知缺陷[2]。精神分裂症是E/I不平衡的另一个条件,具有破坏的抑制性信号传导,尤其是涉及GABA能中间神经元,潜在的潜在的认知和感知障碍[4]。在麻醉期间,E/I平衡也受到深远的影响。麻醉剂通常会增强抑制性神经传递和/或减少兴奋性神经传递,以诱导可逆的意识和感觉丧失[5]。例如,一种常用麻醉剂的氯胺酮充当NMDA受体拮抗剂,导致兴奋性信号传导和皮质和皮质下神经活性的调节降低[6]。同样,
理解复杂的神经回路及其与特定行为的关系需要对神经元亚型进行精确的时间和空间调节。非遗传近红外光刺激是最有前途的大脑非侵入性神经接口技术之一。1-5 最近,脉冲红外神经刺激 (INS) 技术已被引入作为一种能够安全且可逆地调节神经活动的方法。1 与其他波长的红外刺激(例如 808 nm、2 980 nm、3 5.6 μ m 4、5 )引起的效应相反,脉冲传输 ∼ 1.875 μ m 红外波长会导致局部热量传输并被水快速吸收。6 当通过 200 μ m 光纤以短脉冲串(0.25 ms、200 Hz、0.5 s)传输时,这种高度聚焦(亚毫米)光学方法为灵长类动物皮层中的功能性柱特异性刺激提供了一种独特的方法。 7 因此,INS 相较于传统电刺激的优势包括高空间选择性、非接触式传递,以及对于灵长类动物和人类应用而言更为重要的一点,即无需事先表达视蛋白即可对大脑部位进行神经调节。8、9 此外,凭借这种靶向光纤刺激的精确度和 MRI 兼容性,局部 INS 结合 MRI 可用于灵长类动物大脑网络的体内映射 10-12,并有望用于对清醒行为猴子进行神经调节。虽然这些应用已显示出对体内回路神经调节的巨大前景,但其作用机制或对单个细胞类型的影响目前仍然知之甚少。现在有越来越多的证据表明 INS 会导致神经调节。通过电生理学、内在信号光学成像和体内钙成像评估,INS 已被证明可在麻醉啮齿动物中诱导兴奋性和抑制性神经元反应。 13、14 INS 对麻醉恒河猴视觉皮层产生了典型的视觉诱导皮层内在信号 7 的反应,而且导致功能匹配的眼部优势域的选择性调节,与局部皮层-皮层连接的激活一致。超高场 MRI 中的 INS 可激活恒河猴解剖学预测的中尺度全球大脑部位,这进一步表明投射细胞(兴奋性锥体神经元)被 INS 激活。10 – 12 这些 INS 诱导的反应已被证明具有强度和持续时间依赖性。尽管有这些令人信服的证据,但直接用电生理学方法展示神经元反应仍然具有挑战性。一个被称为贝克勒尔效应的问题在于,记录电极的直接加热会通过电极中的热诱导电流污染神经元反应。Cayce 等人。使用同时在麻醉啮齿动物体内使用 INS 进行钙成像,并观察大脑表面皮质星形胶质细胞和顶端树突中的细胞内钙信号。14 Kaszas 等人使用遗传编码的钙指示剂 Syn-GCaMP6f 进行双光子钙成像,并表明 INS 在麻醉小鼠皮质体内的神经元中诱导微弱的细胞内钙信号。15 到目前为止,我们对神经元反应的理解仍然处于初级阶段。其潜在的作用机制尚不清楚 16 – 23,并且在细胞水平上对不同神经元亚型以及体内不同生理状态的反应的影响仍然缺乏。特别是,尽管 fMRI 研究表明 INS 可在远处皮质部位诱导 BOLD 激活,但对于细胞回路对这种功能连接结果的贡献知之甚少。为了研究 INS 如何影响体内单个神经元并检查对不同细胞亚型的影响,我们在小鼠体感皮层 2/3 层以单细胞分辨率对 INS 的神经元钙反应进行了双光子成像。使用特定的遗传编码钙指示剂 GCaMP6 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的意义。使用特定的遗传编码钙指示剂 GCaMP6s 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的含义。使用特定的遗传编码钙指示剂 GCaMP6s 检查了 hSyn 和 mDlx 标记的神经元亚型的钙反应。我们发现 INS 诱导了神经元钙反射变化的强烈、强度依赖性调节,这种调节与脉冲序列重复频率精确同步。在麻醉小鼠中,hSyn 神经元对 INS 表现出正偏转反应。令人惊讶的是,mDlx 神经元群体包含不同的反应,其中一些表现出负向反应,可能反映了抑制神经元群体的多样性。因此,这些数据确定了 INS 对 hSyn 和 mDlx 神经元的有效性以及对细胞亚型的可能依赖性。讨论了这一发现的含义。
环状 RNA (circRNA) 是一大类非编码 RNA。尽管已鉴定出数千种环状转录本,但其中大多数的生物学意义仍未得到探索,部分原因是缺乏生成功能丧失动物模型的有效方法。在本研究中,我们重点研究了 circTulp4,这是一种源自 Tulp4 基因的丰富 circRNA,在大脑和突触区室中富集。通过创建 circTulp4 缺陷小鼠模型,我们在其中突变了负责生成 circTulp4 的剪接接受体位点,但不影响线性 mRNA 或蛋白质水平,我们能够进行全面的表型分析。我们的结果表明,circTulp4 在调节神经元和大脑生理学、调节兴奋性神经传递的强度和对厌恶刺激的敏感性方面至关重要。该研究提供的证据表明,circRNA能够调节神经元中的生物学相关功能,并在表型的多个层面上产生调节作用,为circRNA在神经过程中的调控作用建立了原理证明。
1 Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 2 Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, 3 Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854, 4 Department of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, Departments of 5 Medical and Molecular Genetics and 6 Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, 7 Department of Neuroscience and Cell Biology and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, and 8 Department of Cell生物学与神经科学,罗格斯大学,新泽西州皮斯卡塔维08854
发育中的前额叶皮层(PFC)中的5-羟色胺(5-HT)不平衡与长期行为差异有关。然而,尚不清楚5-HT介导的PFC发育的突触机制。我们发现,在产后两周中,PFC中5-HT释放的化学发生抑制和增强降低并增加了小鼠前额叶2/3锥体神经元上兴奋性脊柱突触的密度和强度。在单个棘突上释放5-HT诱导的结构和功能长期增强(LTP),以谷氨酸能活性非依赖性方式需要5-HT2A和5-HT7受体信号。值得注意的是,诱导5-HT刺激的LTP刺激通过5-HT7GαS激活增加了新形成的棘突(≥6h)的长期存活。在第一周,但没有增加兴奋性突触的密度和强度,慢性治疗小鼠(一种选择性5-羟色胺解脱抑制剂)的小鼠。 5-HT2A和5-HT7受体拮抗剂消除了氟西汀对体内PFC突触改变的影响。 我们的数据描述了产后早期发育期间PFC中PFC中单个棘水平的5-HT依赖性兴奋性突触可塑性的分子基础。慢性治疗小鼠(一种选择性5-羟色胺解脱抑制剂)的小鼠。5-HT2A和5-HT7受体拮抗剂消除了氟西汀对体内PFC突触改变的影响。我们的数据描述了产后早期发育期间PFC中PFC中单个棘水平的5-HT依赖性兴奋性突触可塑性的分子基础。
尽管对行为变异性的神经基础显着兴趣,但对无法响应感知水平刺激的皮质机制几乎没有光明。我们假设由感知水平刺激引起的皮质活性对皮质兴奋性的瞬间发光很敏感,因此可能无法提出产生行为反应。我们使用电子摄影记录测试了这一假设,以遵循六个人类受试者的皮质活性的传播,这些受试者对感知水平的听觉刺激做出了反应。在这里我们表明,对于没有导致行为反应的演示文稿,皮质活性的可能性从听觉皮层到运动皮层降低,并且与局部皮质兴奋性降低有关。皮质兴奋性进行了量化。因此,当人类的听觉刺激接近感知水平的阈值时,皮质兴奋性中的瞬间瞬间弹性决定了对感觉刺激的皮质反应是否成功地将听觉输入连接到了结果行为反应。
Angelman综合征(AS)是一种罕见的神经发育障碍,通常是由缺失或泛素连接酶E3A(UBE3A)基因的母体副本引起的。该疾病的特征是严重的智力障碍,言语缺陷,运动异常,脑电图改变(EEG)活性,自发性癫痫发作,睡眠障碍以及经常笑声的快乐态度。尤其是关于电生理异常,增强的三角振荡能力和升高的兴奋性/抑制性(E/I)比率已记录在AS中,在啮齿动物模型中尤其研究了E/I比。这些电生理特征似乎与患有AS和相关性超同步神经活动的个体的癫痫发作率升高。在这里,我们简要回顾了有关脑电图,E/I比和AS中癫痫发作的发现,包括来自该疾病的啮齿动物模型的数据。我们总结了用于治疗AS的行为方面的药理学AP,包括神经精神上的现象和睡眠障碍,以及在疾病背景下的癫痫发作。抗抑郁药(例如SSRIS和非典型)是在行为上使用的药物之一,而抗惊厥药物(例如丙丙酸和lamotrigine)经常用于控制AS中的癫痫发作。我们最终提出了一些AS中某些现有药理剂的新颖用途,包括甲肾上腺素传播还原药物(α2激动剂,β受体阻滞剂,α1拮抗剂)和胆碱酯酶抑制剂,这些类别的药物可能可以减轻行为干扰和癫痫发作。
*通讯作者。材料和信件的请求应发给a.d. adeb@mednet.ucla.edu。作者贡献:Y.W.在体外和体内进行了与光遗传学有关的实验,进行了CRISPR-Cas9靶向,并进行了所有相关分析。 B.T.,B.S。和P.W.进行了动物手术,并且记录的LV压力跟踪; S.R.进行了单核测序; F.M分析了核测序数据; Y.G.,A.E。和M.P.协助数据解释和上下文化; Y.K.就光学刺激协议和电记录的解释提供了建议; K.Y.和B.N.有助于记录钙瞬变; M.A进行并设计了单细胞电生理实验; M.A.和R.O.有助于解释和设计耦合实验; Q.L.,Z.S.和Z.Q.设计和执行的计算模拟并分析了模拟结果; A.D.概念化了该项目,设计了所有实验,监督了所有数据收集和光学遗传实验,解释了所有心脏电气追踪,并写了手稿。
肌肉痉挛在慢性脊髓损伤(SCI)中很常见,对康复和日常活动提出了挑战。痉挛的药理学管理主要是靶向抑制兴奋性输入的抑制,这是一种阻碍运动后期的方法。为了确定更好的靶标,我们研究了对运动神经元的抑制性和兴奋性突触输入的变化,以及慢性SCI中的动感神经元兴奋性。我们在成年小鼠的性小鼠中诱导了完全或不完全的SCI,并将损伤不完全的人分为低功能恢复组。然后提取sacrocaudal脊髓,并用于研究损伤以下的可塑性,并以幼稚动物的组织为对照。背根的电刺激引起了慢性严重SCI的痉挛性痉挛激活,但不能在对照中进行。为了评估通过感觉刺激激活的总体突触抑制作用,我们测量了脊柱根部恢复的速率依赖性抑郁症。我们发现在慢性损伤模型中抑制性输入受到损害。当药理学上阻断突触抑制时,所有制剂都变得明显痉挛,甚至是对照。但是,慢性损伤的制剂会产生比对照更长的痉挛。然后,我们在感官诱发的痉挛过程中测量了运动神经元的兴奋性突触后术(EPSC)。数据显示EPSC的振幅或动物群中的电导率没有差异。尽管如此,我们发现在慢性SCI中,由EPSC激活的运动神经元持续增强。这些发现表明,运动神经元兴奋性和突触抑制的变化而不是激发会导致痉挛,并且更适合更有效的治疗干预措施。
抽象中风是世界上大部分地区的死亡原因和残疾的主要原因。尤其是中国面临着中风的最大挑战,因为人口很快。在数十年的临床试验中,没有神经保护剂在主要临床终点上具有可重复的功效,因为再灌注可能是神经保护需要临床上有益的。幸运的是,溶栓和血管血管血栓切除术的成功使我们进入了急性缺血性中风(AIS)疗法的再灌注时代。脑细胞保护剂可以预防缺血的有害作用,因此在再灌注前“冻结”缺血性阴茎,扩展了再灌注疗法的时间窗口。由于再灌注通常会导致再灌注损伤,包括流血转化,脑水肿,梗塞进展和神经系统恶化,因此细胞保护剂将通过预防或减少再灌注损伤来增强再灌注疗法的疗效和安全性。因此,再灌注和细胞保护剂是AIS治疗中互惠互益的一对。在这篇综述中,我们概述了在AIS的急性阶段缺血或缺血/再灌注后阴影内导致细胞死亡的关键病理生理事件,重点是兴奋性毒性和自由基。我们讨论了细胞保护疗法的关键药理靶标,并评估了通过临床试验进行的细胞保护剂的最新进展,突出了多坐菌剂的细胞保护剂,这些剂在缺血性和再灌注级联的多个水平上进行干预。